
x.core and x.click components

MASTER THESIS

INFORMATION SYSTEM GROUP

UNIVERSITY OF FRIBOURG, SWITZERLAND

Student: Amos Brocco

Email: amos.brocco@unifr.ch

October 21., 2005

Supervisors:

Prof. Dr. Andreas Meier

Nicolas Werro

Make everything as simple as possible, but not simpler. (Albert Einstein)

ii

Abstract

This master thesis studies a solution for the secure long term storage of data. The increasing quantity

of sensible data in today’s information society, makes security and protection of personal data a key

point for its usage. Storing data usually involves the use of databases that only grant a certain level

of access security; simple login passwords are not enough to guarantee data protection.

Long term information storage is a problem faced by many companies that have old and unused

data still stored in their databases. This causes overhaul, slows operations and does not assure a

sufficient protection of data. As current regulations obligate firms to store data for a certain period, it

is important that beside database systems companies have alternative long term storage applications.

Viable solutions should be based on standardized format to ensure longevity and accessibility of

information, and should provide data protection by mean proven cryptographic algorithms.

The proposed framework provides a long term secure XML data storage solution designed on

a two-tier architecture, and composed of three components: x.core (the server application), x.click

(the graphical user interface) and x.mill (a database migration tool integrated within the graphical

user interface). Data storage is natively based on the XML format by using a DOM and security is

provided by mean of the XML Encryption format. The application also offers querying and updating

languages such as XPath and XUpdate.

To shield users from manually performing cryptographic operations on data, and to ease database

querying and modification inside encrypted portions of data, we advocate the use of a transparent en-

cryption and decryption process which automatically allows the user to directly operate on ciphered

information provided it has the right to.

.

iii

Acknowledgments

Thanks to Andrea Ghirlanda, Prof. Dr. Andreas Meier, Nicolas Werro, my mother and my father

for their patience and my dog Laika. This project is dedicated to a very special person...

iv

Contents

Abstract iii

Acknowledgments iv

1 Introduction 1

1.1 Chapter overview . 1

1.2 Motivation . 1

1.3 Goals of this project . 3

1.4 Typographic conventions . 3

1.5 Copyright and trademarks . 3

2 Technical Background 5

2.1 Chapter overview . 5

2.2 XML Format . 5

2.2.1 XML Fundamentals . 6

2.2.2 XML Syntax definition . 10

2.3 Security and authentication . 15

2.3.1 Cryptography . 15

2.3.2 XML Encryption . 18

2.4 Database querying . 27

2.4.1 XPath . 28

2.4.2 XUpdate . 36

2.4.3 XQuery . 40

2.5 Concurrency . 41

2.5.1 Serialization . 41

2.5.2 Pessimistic approaches . 42

2.5.3 Optimistic approaches . 44

2.5.4 Deadlocks . 45

v

3 RoXanne Framework 46

3.1 Chapter overview . 46

3.2 What is roXanne Framework . 46

3.3 Framework structure . 47

3.3.1 Two-Tier Software Architecture . 48

3.3.2 Use in a three-tier architecture . 48

3.4 x.core component . 50

3.4.1 Data management . 50

3.4.2 Security . 50

3.4.3 Server access . 50

3.5 x.click component . 52

4 Implementation 53

4.1 Chapter overview . 53

4.2 Programming language and libraries . 53

4.2.1 JDOM . 54

4.2.2 Jaxen . 54

4.2.3 Jaxup . 54

4.2.4 Bouncy Castle Crypto package . 54

4.2.5 Jargs . 55

4.3 x.core class overview . 55

4.4 Data management . 55

4.5 Transparent cryptography . 57

4.5.1 Parenthood references . 61

4.5.2 Updating encrypted data . 61

4.5.3 Element removal . 62

4.5.4 The environment model and JDOM . 65

4.6 Cryptographic infrastructure . 66

4.6.1 Encryption and decryption procedures . 67

4.6.2 Key management . 68

4.7 Server implementation . 73

4.7.1 Why not SOAP or XML-RPC ? . 73

4.7.2 Request handling . 74

4.7.3 Sessions . 74

4.7.4 Concurrency . 77

4.8 Performance optimization . 78

4.8.1 Environment updater thread . 78

4.8.2 Data synchronizer thread . 79

vi

4.9 Communication interface and protocol . 81

4.9.1 Client to server protocol . 81

4.9.2 Keychain operations . 83

4.9.3 Performing actions . 84

4.9.4 Server to client protocol . 88

4.9.5 Replies to keychain operations . 88

4.9.6 Replies to actions requests . 90

4.10 Configuration management . 94

5 User manual 96

5.1 Chapter overview . 96

5.2 Server application . 96

5.3 Client application . 98

5.3.1 The main window . 98

5.3.2 Creating a new session . 101

5.3.3 Connecting to server . 101

5.3.4 Terminal emulator . 101

5.3.5 Managing namespaces . 105

5.3.6 Key management . 106

5.3.7 Updating data . 109

5.3.8 Encryption . 111

5.3.9 Decryption . 111

5.3.10 Database interaction . 111

5.3.11 Exporting data to file . 118

5.4 Example client adapter in Python . 118

6 Conclusion and Outlook 123

6.1 Chapter overview . 123

6.2 Conclusion . 123

6.3 Known issues . 124

6.3.1 x.core component . 124

6.3.2 x.click component . 124

6.4 Further directions . 124

6.4.1 Better access control . 124

6.4.2 Multiple document support . 125

6.4.3 XML Canonicalization and digital signature 125

6.4.4 Better XML-ENC support . 125

6.4.5 Alternatives to JDOM . 125

vii

6.4.6 Modular design . 125

6.4.7 Administration console . 125

6.5 Development roadmap . 126

6.6 Final words . 126

A XUpdate syntax definition 127

B Server’s replies exit codes 130

C Simple Python adapter 132

Bibliography 140

viii

List of Tables

2.1 Abbreviated form for selecting nodes . 33

2.2 Arithmetic operators . 33

2.3 Boolean operators . 34

4.1 Configuration keys and default values . 95

B.1 Server’s replies exit code . 130

B.2 Server’s replies exit code (continued) . 131

ix

List of Figures

2.1 Enveloping encryption . 20

2.2 Detached encrytion . 20

2.3 Example of concurrent transaction processing . 43

2.4 Journal and precedence graph for variable B . 43

3.1 Framework overview . 49

3.2 x.core component schematic overview . 51

4.1 x.core component class overview . 56

4.2 JDOM element model . 59

4.3 Root environment representation . 59

4.4 DOM schematic view . 59

4.5 New environment for encrypted data . 60

4.6 Perceived DOM structure . 60

4.7 Example of environment hierachy . 63

4.8 Deletion problem . 63

4.9 Encrypted node access . 69

4.10 Request parsing and execution . 76

4.11 Concurrent access solved by exclusive lock . 80

4.12 Lazy environment updating . 80

5.1 x.click main window . 99

5.2 The toolbar . 102

5.3 Session parameters dialog . 102

5.4 Message shown on failed connection . 102

5.5 Terminal emulator prompt . 102

5.6 Namespaces management dialog . 107

5.7 Key management dialog . 107

5.8 Key generation wizard (step 1) . 108

x

5.9 Key generation wizard (step 2) . 108

5.10 Adding a key (step 1) . 110

5.11 Adding a key (step 2) . 110

5.12 XUpdate wizard . 112

5.13 Encryption wizard . 112

5.14 Decryption wizard . 113

5.15 x.mill wizard (step 1) . 113

5.16 x.mill wizard (step 2) . 115

5.17 x.mill wizard (step 3) . 115

5.18 x.mill wizard (step 4) . 116

5.19 x.mill wizard (step 5) . 116

5.20 x.mill wizard (step 6) . 117

5.21 Data export wizard . 117

5.22 Data export wizard . 121

5.23 Data export wizard . 122

5.24 Export to file wizard . 122

xi

Chapter 1

Introduction

1.1 Chapter overview

This chapter introduces the aspects that motivate the research for a long term data storage solution,

along with some real world examples; next the goals and requirements for a viable way to work out

this problem are discussed. At the end of the chapter typographic conventions and some general

notes about this document are found.

1.2 Motivation

The increasing quantity of sensible data in today’s information society, makes security and protection

of personal data a key point for its safe day-to-day usage. Storing data usually involves the use of

databases that only grant a certain level of access security; simple login passwords are not enough

to guarantee data protection, furthermore they don’t provide any method for data authentication:

for example, a person with access to the database can modify data without restriction. Sometimes

it is necessary to lower security barriers in favor of ease of access, but if the goal is long term data

storage, security could be better managed. In fact future data protection laws will require digital

data to be stored for at least five years, and signed and authenticated in order to be legally valid

[27].

The fact that long term information storage could become a big problem for business if data is to

be protected using encryption software and algorithms, requires the development of valid solutions.

A storage solution should offer a way to preserve information structure and provide abstraction

to represents data as close as possible to human’s way of managing information in real life. Ways

for retrieving contents by mean of querying and search languages as well as methods for updating

information or to add new content to existing databases are also important.

1

CHAPTER 1. INTRODUCTION 2

The long term storage problem imposes additional constraint to the whole system: the solution

must guarantee that information will be still accessible and readable in the future. One of the

major problems until now was the lack of a reliable data format assuring all the above properties.

This goal is often difficult to achieve with proprietary legacy systems, because they commonly use

binary formats strongly tied with the underneath platform. Companies looking for a long term

storage solution would certainly not want to find themselves locked in a situation where the software

supposed to manage their data is no longer available, or that the format has been deprecated by the

software firm that was supposed to mantain it (and support for it is subsequently removed from new

versions of the program) because rescuing old information becomes very difficult and costly. This

problem is much more evident in the case of binary data, where nothing can assure that the same

byte sequences could be read and correctly interpreted by future computing systems. A solution to

these problems is relying on open and standardized formats to ensure that data has better chances

to survive technological changes [29]. Open standards guarantee freedom from patent threats in

the future, while the choice of a standard and internationally recognized data format improves

interoperability between applications.

A third problem is security: a secure storage solution must provide not only software protection

against unauthorized access but also a physical protection by mean of cryptographic methods. En-

crypting data is important because it is the only way to guarantee that sensible data cannot be read

in any way by someone gaining unauthorized access to the database system.

In summary, there exist some strong constraint on the choice of a valuable long term data storage

system. Some of these exclude the use of proprietary or binary formats and further restrict the choice

of a solution.

Fortunately there are data formats that have been designed to be a viable alternative or com-

plement to proprietary formats and give better guarantees of survival: one of these is the eXtended

Markup Language, also known as XML [16]. XML is a text-based standard and open format man-

tained by the World Wide Web Consortium [11], that does not depend on a specific platform,

architecture or software, it is already well supported by existing applications and is easily suitable

for many uses.

The XML format also offers many standardized extensions to support data encryption (XML

ENC) and authentication (XML DIGSIG) [19], meaning that a complete long term data storage

solution can be built around it.

Such software application can be used, for example, to backup data coming from old databases:

some businesses maintain old and unused database systems only to be able, if needed, to recover data

that would unless be unaccessible from modern and supported databases. By having a reliable long

term data storage solution, coupled with a suitable database migration tool, the goal of mantaining

old data would be easily achieved: provided that the software is based on a open and standardized

format, future access to information will not require the presence of old database applications and

CHAPTER 1. INTRODUCTION 3

systems, lowering maintainance costs while increasing security thanks to available security and data

encryption options.

1.3 Goals of this project

The goal of this project is to develop a software application that offers a long term data storage

solution built around the XML format; the key features that should be available are:

- Data security and authentication by mean of proven encryption methods and digital signatures

compatible with the XML syntax.

- Methods for searching and modifying information stored in the database.

- The possibility to access and perform queryies on encrypted fragments of data without requir-

ing explicit deciphering.

- A graphical user interface to access and manage data in a simple and intuitive way.

The application should be developed with a client-server design, and must be able to deal with

concurrent access; furthermore the program would be structured as a compounded and extensible

framework, to allow simple replacement of existing components and/or the injection of new parts.

1.4 Typographic conventions

In this document important terms or definitions are written with a bold style. Code fragments or

references to objects in the code are written with a monospaced courier font.

1.5 Copyright and trademarks

This application uses and contains parts (either modified under the terms of the respective licenses

or unmodified) of the following software:

- Bouncy Castle Crypto APIs (C) 2000 - 2004 The Legion Of The Bouncy Castle

- JDOM Copyright (C) 2004 Jason Hunter & Brett McLaughlin.

- JAXEN Copyright 2003 (C) The Werken Company. All Rights Reserved.

- JAXUP Copyright 2002-2003 Erwin Bolwidt.

- Base64 Tool (C) Robert Harder

CHAPTER 1. INTRODUCTION 4

- JArgs (C) 2001-2003 Steve Purcell (C) 2002 Vidar Holen (C) 2002 Michal Ceresna (C) 2005

Ewan Mellor. and others. Please refer to documentation or source code for complete copyright

info.

Linux is a trademark of Linux Torvalds.

Java, Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE) are trade-

marks of Sun Microsystems.

All other trademarks belongs to the respective owners.

Chapter 2

Technical Background

2.1 Chapter overview

This chapter describes some technical concepts on which this project is based so that implementation

choices described in the following chapters will be clearer. First, an introduction of the XML language

is given as it is the choosen data storage format for this application, along with an introduction

to syntax definition languages that are used in this document; then an overview of information

encryption and authentication is provided, specifically by distinguishing two common algorithm

classes. Then some methods and languages that can be used to browse XML documents and to

modify and update information inside them are discussed. Finally concurrency issues related to

multi-user database system are examined.

2.2 XML Format

One of the basic requirements for effective data storage is a way to structure information in a

coherent and reliable way, so that retrieving it later in time it is still possible and convenient: here

the term “convenient” is used to indicate that data retrival should be possible with not much of

hassle. A first step in this direction is done by using a structured data format, which does not

impose limitations or limits the applicability of such a solution; as a matter of fact, it is possible

to affirm with freedom of doubt that everything a little bit more complex than a plain text file on

a computers is already structured data, meaning that conversion to a different structured format is

only a matter of different syntax and lexical rules.

Other requirements include maintainability, platform independency, longevity (properties ac-

quired by mean of a simple textual, unicode based, and standardized format [29]) and extensibility.

One of the most important structured data formats owning these qualities is XML [20], acronym

of eXtensible Markup Language, which is maintained by the World Wide Web Consortium [11], an

5

CHAPTER 2. TECHNICAL BACKGROUND 6

international organization responsible for a number of web standards.

Major advantages of XML are it’s widely application support, implementation and usage and

the fact that it is open format; these are also probably the reasons of such a wide acceptance and

adoption of this standard and the reason that there exist so many XML extension that cover almost

every need, from graphical formats to music or document storage.

Basically, XML is a set of rules or conventions used to create text and text files containing

structured data that is accessible and can be effectively used by large public. In fact XML is

perhaps the simplest way to generate and store data on a computer, because it provides a simple

syntax with very few syntactical constraints and a wide freedom of application. Being a tag based

language similar to HTML (and equal to its successor, XHTML) but providing free named tags

and attributes, means that it’s syntax is not too much different and it is easy to learn for most

computer users; though it is a text based format, XML is only a way of storing data, not a method

to present it to the user. For this reason this framework is not intended to be used for normal data

access operations, nor to show data to a customer; instead, it can be considered as a middle-ware

application that other applications can use to store and retrieve plain or encrypted XML data. This

is made possible by the fact programs based on XML can interact with each other in a simple

manner, due of the common base format.

In this section, a brief introduction of the XML language is given.

2.2.1 XML Fundamentals

This section provides some of the basics of the XML format so that concepts and terms used later in

this document can be better understood. XML files are commonly called XML documents and are

build up of various entities called elements. An element can contain some information and, like a

box, it is delimited by text tags. Elements can be combined one inside each other, without limitation

on the number of children an element can have, so that the whole document can be represented like

a tree. Suppose, for example, that information about a group of singers, like their name, age and

sex, is to be stored. The corresponding XML document could be the one illustrated in Example

2.2.1.

Example 2.2.1 A very simple XML document

<singers>

<singer>

<name>Avril Lavigne</name>

<age>21</age>

<sex>F</sex>

</singer>

<singer>

CHAPTER 2. TECHNICAL BACKGROUND 7

<name>Anna Nalick</name>

<age>20</age>

<sex>F</sex>

</singer>

</singers>

The first line in the document is called the XML declaration and should always be included: it

defines the XML version of the document, which in this case conforms to the 1.0 specification of XML.

It is important to note that XML only contains information: so that it doesn’t provide information

about how to present this information; similarly tag names do not provide contextual information

and the fact that tags are labeled in ways that give some information of what their content is, it is

up to the application that reads the XML content to interpret the actual information. For example,

an XML document describing some objects could contain an element that clearly has a different

meaning, than that of elements with the same name from Example 2.1.

Binary data An XML document cannot contain binary data, so if we want to insert a picture

in an XML document we first have to convert binary data to a suitable textual representation such

as the Base64 format (also used in email attachments). This restriction is not to be viewed as a

negative point: being a text-only format means that it is possible to edit content with any text

editor, without needing a specific application. This choice also enforces platform independency.

Elements The document of the previous example is composed of a single element named singers.

Elements are delimited by start-tags and end-tags, and for the element singers, these are <singers>

and </singers>. Everything inside these two tags is said to be the content of the element and it can

be plain text (as in this example), also called character data, or other elements. Beside character

data, every other content is simply referenced as markup, carrying no specific information beside

the structural one.

Empty elements Empty elements, that is elements carrying no content (beside attributes), can

be specified using an abbreviated but equivalent syntax for enclosing tags. For example, instead of

writing <status id="puffo"></status> the form <status id="puffo"/> can be used.

Case sensitivity The XML format is case-sensitive, meaning that <guitar> is different from

<Guitar> or <GUITAR> (one of the most common syntax errors is to mistype either the opening

or the closing tag). For every open tag there must be a corresponding closing tag (except for

abbreviated tags, which are already closed entities) and it is not possible to interlace tags.

CHAPTER 2. TECHNICAL BACKGROUND 8

Example 2.2.2 Some non valid XML

<planes>

<cars>

</planes

</cars>

<time>

<hour>2</hour>

<min>56</min>

</Time>

Element parenthood As said before, elements in a document form a hierachical tree structure

that introduces the concept of child, parent and sibling node or element. From now the term

node is used as being equivalent to element. In Example 2.2.1, singers was the parent of both

singer elements, which in turn were the children of singers. Each singer element is the sibling

of other singer elements. Additionnally, name, age, singer and sex nodes are all descendants

of the singers node. Understanding the tree nature of XML is an essential step in managing data

in XML format, as the parenthood between elements is important to navigate inside the tree to

retrieve related information.

Root element Each document contains at most an element which has no parent, and that contains

all other content: this element is called the root node or root element of the XML document. A root

node cannot have any sibling.

Attributes Elements not only can contain content, but can also have associated attributes. An

attribute consist in a name and a string value, and is declared inside the starting tag (or inside

the complete tag if the abbreviated syntax is used). Example 2.2.3 shows some kind of attributes.

Note that the value of an attribute must be enclosed in quotation marks and there cannot be two

attributes with the same name within the same element.

Example 2.2.3 Elements with attributes

<product id="1209.932">Naturla water</product>

<song style="pop" year="2004">Don’t tell me</song>

CHAPTER 2. TECHNICAL BACKGROUND 9

Attributes can be used to add additional information to an element, where there is no need to add

additional child elements for this. In the previous example, the element product has an attribute

id that can be useful to distinguish it from other product elements, but it should be clear that it is

up to the user to assure that id attributes have different values for different products, as XML does

not enforce that.

Namespaces The XML syntax is not very strong and there is no way of distiguing elements with

the same name but that carry different information. This problem arises frequently when some

nodes are to be referenced by mean of querying languages, such as XPath, or when information

must be extrapolated from the document without any precise reference to its structure. Example

2.2.4 provides and example XML document that better explains the point.

Example 2.2.4 Nodes with same name can be difficult to reference

<factory>

<name>ChristmasDream Inc.</name>

<products>

<product>

<name>Teddy Bear</name>

</product>

</products>

</factory>

The example shows that the tag name is used in two different locations, each one with different

meaning: in the first case the tag refers to the name of the factory, in the second case it refers to

the name of the product. What lacks in the XML definition given up there is a way to differentiate

between elements with the same name being used in different contexts: the solution is to use names-

paces. Namespaces make possible to define that a given tag name has a certain meaning within a

certain context and a different meaning in another context. Namespaces are declared in a similar

way as attributes, by inserting some sort of declaration inside the opening tag of an element: before

the equal sign goes the label , a colon and (optionally) a namespace prefix; the declared namespace

value follows the equal sign and is called URI (Uniform Resource Locator) and, as for the value

of attributes, it must be always enclosed in quotation marks. The prefix can also be omitted, so

that namespaces can be declared in two forms: with a specific prefix (named namespace) or without

(default namespace). To declare a named namespace named mynamespace we should add the

following code to the element from which we want the declaration to be valid:

<something xmlns:mynamespace="http://www.myenterprise.com/2005/idea#ns">

CHAPTER 2. TECHNICAL BACKGROUND 10

...

</something>

And to declare that an element should be interpreted as inside this namespace, we have to add

the namespace name this way:

<mynamespace:myelement id="1"/>

Note that the namespace mynamespace should have been declared before its usage, so in this

example, the element myelement must be a descendant of node something (where the namespace

mynamespace has been previously declared).

It is also possible to declare a namespace without a prefix, and this is done by omitting the colon

and the prefix name after the xmlns label, like:

<books xmlns="http://www.syscall.org/#def2005"/>

By not giving a prefix to the namespace what happens is that the namespace is implicitly applied

to the element and all contents inside it, where by giving it, namespaces can be used only by nodes

that specify it explicitly. Namespaces are important in XML document browsing because they

provide a way to extract information that belong only to certain context.

In the given example, the URI associated to namespaces always look like web addresses: there

is no specific rule, meaning that the URI can be any valid XML string, but it is a common use to

refer at least to the website of “creators” of the namespace.

Strings Character data or attributes values, as well as element names or attribute keys must be

valid Unicode (UTF-8) strings. Accented letters, language dependend characters and control or

reserved symbols (such as the “greater than” and the “less than” simbols used to indicate tags)

must be properly replaced with special codes (please refer to a more complete XML reference for a

list of illegal characters and their equivalent code, such as [16]).

2.2.2 XML Syntax definition

Despite the fact that the XML format gives the user a great degree of freedom of expression, it is

often required that documents respect a certain syntax in order to be correctly interpreted by the

application that’s reading them. Having a defined syntax for XML documents is also essential if those

are to be shared between people, and for shared data in general. For these reasons complementary

languages have been designed to express syntax rules that apply to documents: applications or users

can hereby validate XML against a syntax definition, or use it to generate documents valid for a

particular application or XML language extension.

It is important to distinguish between valid XML documents and those that are validated against

a particular syntax: in the first case, a document must only follow the rules and restrictions imposed

CHAPTER 2. TECHNICAL BACKGROUND 11

by the XML standard as explained in the previous section in order to be valid; in the latter case, the

syntax is required by a particular application in order to be able to correctly parse the document.

A document that is validated against an XML syntax definition is also a valid XML document, but

not vice-versa.

XML Document Type Definition (DTD)

An XML Document Type Definition is used to define which elements can be used inside an XML

document and how they can be structured. A DTD can be declared inside the XML document itself

(commonly referred as inline declaration, as shown in Example 2.2.5) or can be referenced as an

external resource (Example 2.2.6).

Example 2.2.5 Inline DTD declaration

<?xml version="1.0"?>

<!DOCTYPE mydocument [

<!ELEMENT content (title,body)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

<mydocument>

<content>

<title>Reminder</title>

<body>Foire Fribourg</body>

</content>

</mydocument>

Example 2.2.6 External DTD declaration

<?xml version="1.0"?>

<!DOCTYPE mydocument SYSTEM "mydtd.dtd">

<mydocument>

<content>

<title>Reminder</title>

<body>Foire Fribourg</body>

</content>

</mydocument>

File mydtd.dtd would then contain:

CHAPTER 2. TECHNICAL BACKGROUND 12

<?xml version="1.0"?>

<!DOCTYPE mydocument [

<!ELEMENT content (title,body)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

The document type is to be declared within a !DOCTYPE element: this special element does

not interfere with the syntax of the XML document, and is silently ignored by applications not

supporting document validation.

A document type declaration, either inline or external, must contain the name of the root element

it refers to, in this case mydocument: this means that syntax is defined only for this kind of element.

External declarations contain an identifier that is used to determine the nature of the DTD:

common XML formats that are described by public and univocal identifiers (typically whose pub-

lished and/or recognized by the W3C) require the PUBLIC keyword, wheras private or local type

declarations must use the SYSTEM keyword.

The actual syntax declaration is to be expressed by mean of declarations that must be placed in

between the square brackets whithin the DOCTYPE element.

Element declaration An element is declared by mean of and !ELEMENT block: elements can be

declared to allow them contain text, other elements, or to be empty. The syntax is:

<!ELEMENT name (content)>

The first parameter is the valid local name of the element. Valid element content is listed inside

parentheses as second parameter, and can be:

- EMPTY : used to declare empty elements

- #CDATA : the element contains character data that is not to be parsed.

- #PCDATA : character data that is going to be parsed (if actual data contains XML elements,

these need to be correctly declared in the DTD)

- ANY : declares an element with any content

- a list of children element names, separated by commas

When declaring children elements it is possible to put some occurrence constraints by adding a

special sign after the child element name (if no sign is present the child element can only occur one

time):

CHAPTER 2. TECHNICAL BACKGROUND 13

- + : declares that the child element must occur one or more times

- * : the child element can occur zero or more times

- ? : the child element is optional, and can be omitted or occur one time

Example 2.2.7 Element declaration

<!ELEMENT robot (head,arms+,legs+,torso)>

<!ELEMENT head (#CDATA)>

<!ELEMENT arms (EMPTY)>

<!ELEMENT legs (EMPTY)>

<!ELEMENT torso (ANY)>

In Example 2.2.7, the robot element must contain the head, arms, legs and torso children;

arms and legs elements must occur one or more times, wheras head and torso elements exactly

one time.

Attribute declaration Attributes of an element can be declared after the element’s declaration

itself, by mean of the !ATTLIST block.

<!ATTLIST element_name attribute_name type default_value>

The element name is the name of the element the attribute applies to. The type of the attribute

can have the following values:

- CDATA : for character data

- (evalue|evalue|..) : for an enumerated value

- ID : the value is an unique id

- IDREF : if the value is the id of another element

- IDREFS : if the value is a list of other identifiers

- NMTOKEN : for a valid XML name

- NMTOKENS : for a list of valid XML names

- ENTITY : if the value is an entity

- ENTITIES : if the value is a list of entities

- NOTATION : if the value is a name of a notation

CHAPTER 2. TECHNICAL BACKGROUND 14

- xml : if the value is predefined

The default value can have the following values:

- value : the attribute value is assumed to be value if no declaration is found in the XML

document

- #REQUIRED : the attribute must be explicitly declared

- #IMPLIED : the attribute is optional

- #FIXED value : the attribute value is fixed

Example 2.2.8 Attribute declaration

<!ELEMENT hair (EMPTY)>

<!ATTLIST hair color CDATA #REQUIRED>

<!ATTLIST hair bald (true|false) "false">

Entity declaration Entities can be viewed as variables used to define shortcuts to common text.

Entities can reference themselves, and can be declared externally or internally by mean of the

!ENTITY block.

External declarations require the URI of the document declaring them internally:

<!ENTITY entity_name SYSTEM "uri">

The entity name can be any valid XML label; an entity can then be used inside the XML docu-

ment by prepending the & character to the entity name. An example of external entity declaration

is shown in Example 2.2.9, where the author entity can be subsequently referenced by mean of the

&author; label.

Example 2.2.9 External entity declaration

<!ENTITY author SYSTEM "http://www.syscall.org/entity.dtd">

In contrast, internal declarations set the entity value in place:

<!ENTITY entity_name "entity_value">

An example of internal entity declaration is listed in Example 2.2.10; references to internal entities

are done in the same way as for external ones.

CHAPTER 2. TECHNICAL BACKGROUND 15

Example 2.2.10 Internal entity declaration

<!ENTITY author "Elton John">

The Document Type Definition is included in the XML 1.0 standard, but it is often seen as

limited because it does not support some newer XML features, such as namespaces. For this reason

other syntax description languages have emerged, for example XML Schema.

XML Schema

XML Schema is an XML syntax definition language elaborated by the W3C and published in 2001.

This language is much more powerful and expressive than DTD for describing syntaxes, by providing

fine control over the format and data types of element and attribute values. The XML Schema

standard from W3C [38] includes simple and complex data types, type derivation and inheritance,

better element occurrence constraint and namespace-aware element and attribute declarations.

Because this language is not as simple as DTD a formal description is omitted here, because an

at least satisfactory explaination would require a chapter on its own; by the way more information

can be found in [16] and some tutorials are provided at [44].

2.3 Security and authentication

Data protection has an important role in long term storage, much more important than fast access,

fast data throughput or concurrent access by multiple clients. As the data is in XML format, it was

obvious to look for an XML-compatible security method, meaning that it is important that secured

data is still valid XML, in order not to invalidate the assumptions made for this project. Fortunately

there exist a language extension called XML-Encryption designed to produce encrypted but valid

XML from other data. Another way to protect data from unwanted modification is to authenticate

it using a digital signature based on public key cryptography, but, as we will see later in this report,

it was not implemented as part of the server as it can be easily added as a client feature.

In this section a technical overview of this format and its capabilities is offered.

2.3.1 Cryptography

The term “encryption” means a way of protecting some data from unwanted access. Data encryption

is mostly used when data must be transmitted over an insecure channel or stored on an insecure

data storage media. The term “insecure” means that there exist the possibility that a third person

listens on the communication channel or steal the storage media and get access to sensible data.

CHAPTER 2. TECHNICAL BACKGROUND 16

The etymological meaning of the word “cryptography” is due to Greek words “kryptós”, which

means “hidden”, and “gráphein”, “to write”. Cryptography is the study of various means of con-

verting information from its normal, plain and comprehensible form in to an (human and machine)

incomprehensible format, in order to make it unreadable to persons without some secret knowledge.

Cryptography has been used since many centuries, mostly by armies and governments, to store

sensible data and ensure secrecy of important communications. Clearly there are big differences in

methods used in the past and what is required for today’s security: in ancient times cryptography

was related to linguistics studies, because information was essentially textual and because of the

fact that encryption and decryption would have been done by humans (which limited the use of too

complex algorithms).

In recent times, the development in computing power has permitted the exploitation of better

encryption methods that are strongly tied with mathematics, especially discrete mathematics, in-

cluding number theory, information theory, computational complexity, statistic and combinatorics.

Along with better and more secure encryption algorithms, cryptography has seen a development not

only in the governmental or army field, but also in civilian usage, for example digital signatures or

digital payment systems. A help to this wide usage has come from the fact that its use has been

greatly simplified, in a manner that now cryptographic technology is transparently built into much

of today’s computing and telecommunications infrastructure, without users being aware of it. The

counterpart to cryptography is called cryptanalysis, and its a science that studies ways to circumvent

cryptographical protections.

Glossary of terms

The original information which is to be protected by cryptography (or encrypted) is called plain

text. The plain text gets encrypted or enciphered by mean on an encryption algorithm or cipher

to produce an unreadable version called cipher text or cryptogram. Most encryption algorithms

require a key parameter or variable that controls the way the ciphered text gets produced. An

encryption algorithm can be viewed as a two parameters function, taking an argument for the plain

text and one for the encryption key.

The process of recovering the plain text from the ciphered one is called decryption or decipher-

ing. Also for this reverse process a decryption key (maybe different from the encryption one) and a

decryption algorithm is needed.

Protocols specify the details of how ciphers (and other cryptographic primitives) are to be used

to achieve specific tasks. A suite of protocols, ciphers, key management, user-prescribed actions

implemented together as a system constitute a cryptosystem.

CHAPTER 2. TECHNICAL BACKGROUND 17

Goals of cryptography

Cryptography has essentially five goals to achieve (not necessarily at the same time):

(i) Confidentiality: the cryptosystem must be able to give access to data only

to an authorized recipient. This means that there must not be any possibility

to access (decipher) ciphered data without the secret knowledge. Additionally

the system must not give any significant information about plain contents to

unauthorized recipients.

(ii) Integrity: who receives the data should be able to check if contents have been

modified during transmission.

(iii) Authentication: the recipient should be able to identify the sender of the

message univocally, so that it is possible to check if data comes from a wrong

source.

(iv) Non-repudiation: the sender should not be able to deny having sent a message.

(v) Antireplay: data should not be allowed to be sent multiple times to the recipient

without the sender knowing.

Although cryptography is able to provide every of the above goals, there are situations where

only some of them are desirable. Consider, for example, when a message needs not to be ciphered,

but the content itself is required to come from a particular sender; in this case, only authentication

and integrity would be useful.

Ciphers

Unfortunately there is generally no “one fits all” algorithm, but there exist two categories of algo-

rithms trying to achieve some of the goals listed in the previous sub-section: public key cryptog-

raphy and symmetric key cryptography. The difference between these two methods is simple (at

least from the user point of view): symmetric key algorithms use the same key for both encryption

and decryption as the public key algorithms (also called asymmetric) use different keys to cipher

and decipher data. Algorithms in both categories can then be grouped into stream ciphers and block

ciphers. Stream cipher have no size limit to the data they can deal with, wheras block cipher can

only work on pieces of data (blocks) of a certain length at time, meaning that encrypting more data

requires that it is divided in many blocks first. The block ciphers DES, IDEA and AES, and the

stream cipher RC4, are among the most well-known symmetric key ciphers.

Public key and simmetric key cryptography have both advantages and drawbacks. Usually

symmetric ciphers are faster than asymmetric ones, but also have the problem that both sender and

recipiend have to share the same key. As this key must also be transmitted from the sender to the

CHAPTER 2. TECHNICAL BACKGROUND 18

recipient someway it must be exchanged in a secure way. Public key encryption has the advantage

of having different keys for encryption and decryption, meaning that the public key (as the name

says) can be freely distributed over an insecure channel.

Public key algorithms are designed to make use of usually hard mathematical problems, such as

factorization of big numbers. For efficiency reasons, hybrid encryption systems are used in practice;

a key is exchanged using a public-key cipher, and the rest of the communication is encrypted using

a symmetric-key algorithm (which is typically much faster).

Cryptographic hash and digital signatures

Criptography is not only concerned with protecting data from unwanted access but also to authen-

ticate it to prevent illegal modification. Digital signatures are a way to authenticate data by the use

of public key algorithms and hash functions. A cryptographic hash function is a one-way function

(easy to compute, difficult to invert) that produces new data (an hash) that identifies univocally the

data from which it was generated. Well known hash functions are MD5 and SHA1. The generated

hash is then ciphered using a public key algorithm to produce a digital signature, that can be verified

by recalculating the hash on the received data and comparing it with the one in the signature.

Public key criptography

As stated before, symmetric key algorithms use the same key for both encryption and decryption,

and public key algorithms make use of a public key for encryption and a different, private, key for

decryption. The public key can be derived from the private key, but it must be difficult (ideally

impossible) to derive the private one from the public one. This means that the sender can send the

public key to someone else and be sure that he would be the only person that can decrypt and read

encrypted messages because he owns the related private key.

2.3.2 XML Encryption

XML Encryption [19] specifies a syntax to encrypt XML content, while maintaining compatibility

with the XML syntax. XML encryption is a specification developed by World Wide Web Consortium

(W3C) in 2002 that contains the steps to encrypt data, to decrypt data, the XML syntax to represent

encrypted data, the information used to decrypt the data, and a list of encryption algorithms such

as triple DES, AES, and RSA. This means that, instead of using common text or binary encryption

formats, encrypted information is still XML, which also means that it can be created, managed and

processed by traditional XML tools. XML Encryption can be used to encrypt almost arbitrary data,

but if it is used to encrypt XML, it is limited to encrypting an entire element or the entire content

of an element. For example, it is not possible to encrypt a single attribute value; thus the minimal

granulatity offered by XML Encryption is single element encryption.

CHAPTER 2. TECHNICAL BACKGROUND 19

Enveloping and Detached encryption

Encrypted XML data is usually defined inside an EncryptedData element, which contains, beside

the cipher data itself, also information on how it was produced (algorithm used, key,...).

The XML Encryption allows two types of encryption: either enveloping or detached. The

first format is used if the encrypted data is contained in the EncryptedData structure, the latter if

the encrypted block is only referenced and stored outside the EncryptedData element. Note that

this framework only support creation and processing of enveloping encryption. Figure 2.1 shows a

schematical view of enveloping encryption, wheras Figure 2.2 shows detached encryption.

XML Encryption syntax

Before analyzing in detail how XML Encryption works, lets specify its complete XML syntax by

using the XML example shown in note 2.3.1.

Note 2.3.1 XML Encryption syntax example

<EncryptedData Id? Type?>

<EncryptionMethod/>?

<ds:KeyInfo>

<EncryptedKey/>?

<AgreementMethod/>?

<ds:KeyName/>?

<ds:RetrievalMethod/>?

<ds:*/>?

</ds:KeyInfo>?

<CipherData>

<CipherValue/>?

<CipherReference URI?/>?

</CipherData>

<EncryptionProperties/>?

</EncryptedData>

It is worth to note that the XML Encryption syntax does not have a version number field; instead

the namespace definition is used for this purpose.

The EncryptedType

EncryptedType is an abstract type from which both EncryptedData and EncryptedKey elements

are derived. It essentially describes some information about the method and key used to perform

CHAPTER 2. TECHNICAL BACKGROUND 20

Figure 2.1: Enveloping encryption

Figure 2.2: Detached encrytion

CHAPTER 2. TECHNICAL BACKGROUND 21

encryption of the respective content (the CipherData for the first, the key for the latter). The

schema relative to this node is shown in Note 2.3.2.

Note 2.3.2 EncryptedType Schema

<complexType name="EncryptedType" abstract="true">

<sequence>

<element name="EncryptionMethod"

type="xenc:EncryptionMethodType"

minOccurs="0"/>

<element ref="ds:KeyInfo" minOccurs="0"/>

<element ref="xenc:CipherData"/>

<element ref="xenc:EncryptionProperties"

minOccurs="0"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

<attribute name="Type" type="anyURI" use="optional"/>

<attribute name="MimeType" type=‘string’ use="optional"/>

<attribute name="Encoding" type="string" use="optional"/>

</complexType>

The “abstract” schema attribute means that it is not possible to use an EncryptedType ele-

ment directly, but only by mean of one of its “implementation” as EncryptedData or EncrypteKey

elements. There are many attributes that are marked as optional.

The EncryptionMethod element contains informations about the encryption method used to

encrypt data, but can be omitted if the data itself is not encrypted (identity is a valid, although

meaningless, encryption method) or if the encryption method can be determined by the application

context.

The optional ds:Keyinfo element contains the original definition of this element, which carries

information about the key that was used to encrypt the data.

The CipherData element, which cannot be omitted, contains or points to the actual cipher text

(a pointer must be described by mean of a CipherReference element).

The EncryptionProperties child can contain additional information concerning the encryption,

such as the time it was performed.

The EncryptedType element can also declare some optional attributes:

- Id , an identifier used to reference the node within the document

- Type , which provides information about the plain text and/or its processing before encryption

(for example compression)

CHAPTER 2. TECHNICAL BACKGROUND 22

- MimeType , which sets the MIME type of the encrypted data (for example image/png)

- Encoding , which determines the encoding of the encrypted data (for example Base64)

As these attributes are optional, no check is done; in most cases the application is able to deduce

some of them from the Type attribute.

EncryptionMethod element

The EncryptionMethod is an optional element that can descend from elements “implementing” the

EncryptedType syntax, that describes the encryption algorithm applied to the cipher data. As this

element is optional, if missing, the application must be able to determine the encryption algorithm

from the context. The schema for this element is shown in Note 2.3.3.

Note 2.3.3 EncryptionMethod Schema

<element name="EncryptionMethod"

type="xenc:EncryptionMethodType"/>

<complexType name="EncryptionMethodType" mixed="true">

<sequence>

<element name="KeySize" minOccurs="0"

type="xenc:KeySizeType"/>

<element name="OAEPparams" minOccurs="0"

type="base64Binary"/>

<any namespace="##other" minOccurs="0"

maxOccurs="unbounded"/>

<!-- (0,unbounded) elements from

(1,1) external namespace -->

</sequence>

<attribute name="Algorithm"

type="anyURI" use="required"/>

</complexType>

Children allowed for an EncryptionMethod element depend on the algorithm chosen (speci-

fied by the Algorithm attribute). Example algorithm types are element encryption, declared by

setting the type attribute as http://www.w3.org/2001/04/xmlenc#Element (supported by

this framework for transparent decryption) and content encryption, with the type value set to

http://www.w3.org/2001/04/xmlenc#Content .

CHAPTER 2. TECHNICAL BACKGROUND 23

CipherData Element

The CipherData element is a mandatory child of the EncryptedData and EncryptedKey elements.

Essentially it is “where” ciphered data is contained or referenced; the encrypted data is encoded as

a Base64 character sequence. The schema for CipherData is listed in Note 2.3.4.

Note 2.3.4 CipherData Schema

<element name="CipherData"

type="xenc:CipherDataType"/>

<complexType name="CipherDataType">

<sequence>

<choice>

<element name="CipherValue"

type="ds:CryptoBynary"/>

<element ref="xenc:CipherReference"/>

</choice>

</sequence>

</complexType>

As mentioned before, encrypted data can be either enveloped or detached; in the first case it is

a CipherValue element to be used, in the latter a CipherReference one. The CipherReference

element must then point to the cipher text, and the syntax used to retrieve the external node by

mean of an URI and its pre-processing using a Transform is found in Note 2.3.5.

Note 2.3.5 CipherReference Schema

<element name="CipherReference"

type="xenc:CipherReferenceType"/>

<complexType name="CipherReferenceType">

<choice>

<element name="Transforms" minOccurs="0"/>

</choice>

<attribute name="URI" type="anyURI" use="required"/>

</complexType>

<complexType name="TransformsType">

<sequence>

<element ref="ds:Transform"

maxOccurs="unbounded"/>

</sequence>

</complexType>

CHAPTER 2. TECHNICAL BACKGROUND 24

The URI attribute is mandatory, and must point to the XML data to be processed; actual cipher

text is generated by applying the given Tranform (if specified).

EncryptionProperties element

The EncryptionProperties element can be used to add additional information concerning the

EncryptedData or EncryptedKey elements. For example, it could be useful to insert a timestamp

to be able to determine when encryption took place.

Note 2.3.6 EncryptionProperties schema

<element name="EncryptionProperties"

type="xenc:EncryptionPropertiesType"/>

<complexType name="EncryptionPropertiesType">

<sequence>

<element ref="xenc:EncryptionProperty"

maxOccurs="unbounded"/>

</sequence>

<attribute name="Id" type="ID" use="optional"/>

</complexType>

<element name="EncryptionProperties"

type="xenc:EncryptionPropertyType"/>

<complexType name="EncryptionPropertyType" mixed="true">

<choice maxOccurs="unbounded">

<any namespace="##other" processContents="lax"/>

</choice>

<attribute name="Target" type="anyURI" use="optional"/>

<attribute name="Id" type="ID" use="optional"/>

<anyAttribute namespace="http://www.w3.org/XML/1998/namespace"/>

</complexType>

EncryptedData element

The first type of node derived from the abstract type EncryptedType, is the EncryptedData element.

As an element gets encrypted, it is replaced with an EncryptedData element, and the cipher text is

contained in its CipherData child. Note 2.3.7 shows its schema.

CHAPTER 2. TECHNICAL BACKGROUND 25

Note 2.3.7 EncryptedData schema

<element name="EncryptedData"

type="xenc:EncryptedDataType"/>

<complexType name="EncryptedDataType">

<complexContent>

<extension base="xenc:EncryptedType"/>

</complexContent>

</complexType>

EncryptedKey element

The EncryptedKey element can be used to embed encryption keys which have been also encrypted.

Encrypted data and keys can be either included in this element (inside a CipherData child) or simply

referenced (as it was also possible with the EncryptedData element). This enveloped key structure

means that it is possible to carry cipher data along with the necessary key within the same XML

construct.

Note 2.3.8 EncryptedKey schema

<element name="EncryptedKey"

type="xenc:EncryptedKeyType"/>

<complexType name="EncryptedKeyType">

<complexContent>

<extension base="xenc:EncryptedType">

<sequence>

<element ref="xenc:ReferenceList"

minOccurs="0"/>

<element name="CarriedKeyName" type="string"

minOccurs="0"/>

</sequence>

<attribute name="Recipient" type="string" use="optional"/>

</extension>

</complextContent>

</complexType>

The ReferenceList element can be used to point to data and keys encrypted with the key

contained into a CipherData child. The optional CarriedKeyName element is used to associate

an human-readable name to the key, and it shouldn’t necessarely be unique within the document.

Clearly this element type inherits other attributes and properties from the EncryptedType abstract

type, such as a Type attribute used to specify the type of the encryption key.

CHAPTER 2. TECHNICAL BACKGROUND 26

ReferenceList element

The ReferenceList element carries references to EncryptedData elements encrypted using the key

defined in the EncryptedKey child. These references are stored inside DataReference elements,

and these can point to multiple EncryptedData elements encrypted with the same key. As for

CipherData, it is possible to associate a Transform element that specifies a transformation to be

performed on the target URI to retrieve the actual data. Note 2.3.9 shows the schema associated

with the ReferenceList element.

Note 2.3.9 ReferenceList schema

<element name="ReferenceList">

<complexType>

<sequence>

<element name="DataReference"

type="xenc:ReferenceType"

minOccurs="0" maxOccurs="unbounded"/>

<element name="KeyReference"

type="xenc:ReferenceType"

minOccurs="0" maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<complexType name="ReferenceType">

<sequence>

<any namespace="##other" minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

<attribute name="URI" type="anyURI" use="optional"/>

</complexType>

An example

To better understand how an EncryptedData element looks like, Example 2.3.1 shows a fragment

of generated code, referencing a key named mykey.

CHAPTER 2. TECHNICAL BACKGROUND 27

Example 2.3.1 An example of generated EncryptedData element

<EncryptedData xmlns="http://www.w3.org/2001/04/xmlenc#"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#"

Type="http://www.w3.org/2001/04/xmlenc#Element">

<EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc"/>

<ds:KeyInfo>

<ds:KeyName>mykey</ds:KeyName>

</ds:KeyInfo>

<CipherData>

<CipherValue>

rmpcNKyxdWGObsNauugZT2P8w22Wuqoq69

GYqKQ+kaCQaoJoAtnFN98uk4dahp8p9vy2y/s9HDv+

eEdTDS9zavLCVD2cRtDPb5YAFJ6i4I9puFEyrIhnn8F9Q

HCM74xQLeIBNEoVFuQS3Gpk6nUK8xtVTb9vD1uw3X9

HYYVSWUi8KVV5gxEcKTjlr4nReL+60bazp0UXsNJEzM4

jSE6v6sEhUxs+rB5nJV6Y VpjJ2xuegC3iGWZTyWrhjB

14hshVtdJEJXs2X8lna/cdK7sVhqRG7w7L0QHDHFOT6/

PnNg69bZjxFhmmOoPvD2EPnzHlIZhHIaa1aVoH7H/

oJ9ojTa2qMyi+DDNBqhad8UtefdMkhdaiXXoMjXfBl7LY

GKnYqUvjTvDx8beLo8JIcgI6g2d0jJiDJ4u4hdbiGBWnRF

MBpEVWkucfQCg

</CipherValue>

</CipherData>

</EncryptedData>

The chapter dedicated to the actual framework implementation discuss how this element is

constructed and how it is then parsed to retrieve plain XML data.

2.4 Database querying

A data storage system, as well as a database, should not only offer a way to store information,

but also a practical way to retrieve and modify it. The term ”practical way” means that retrieval

and update of data should be as simple and precise as possible. Traditional databases (MySQL,

PostgreSQL,...) [2, 18] offer querying languages such as SQL, which is both powerful and easy to use,

but that are bound to the relational model on which data is organized: the object oriented nature

of XML requires other approaches to querying languages. In this section three querying languages

are examined: XPath, XUpdate and XQuery.

CHAPTER 2. TECHNICAL BACKGROUND 28

2.4.1 XPath

XPath is the acronym of XML Path Language and it is a W3C Recommendation [11] used to identify

particular nodes or a set of nodes inside of an XML document. This language is also used by other

languages, such as XSLT, XSL Schema, XPointer and has been implemented in many other situations

where a way to retrieve elements or fragments of code from an XML document was necessary.

As described before, an XML document is organized in a tree structure, where data is contained

in objects called nodes; what an XPath query does, is retrieving nodes or sets of nodes out of this

tree [35].

It is important to note that the XPath syntax is not derived in any way from XML, and in fact

its queryies (mostly in the abbreviated form) look like paths inside a filesystem or web URLs.

Structure of an XML document

In one of the previous sections the basics of the XML syntax have been explained: an XML document

is based on the concept of node, so the XPath language is also based on this concept to perform search

inside the XML tree. Before explaining how to perform searches, lets have a look on the different

types of nodes and their type. There are also additional XML objects that are also considered as

nodes within the XPath specification.

Node types

Most ofnodes inside an XML document (or a document fragment) are from either one of the following

three node types:

Root Node This node is the root of the document, and contains all other nodes. For each

document there is exactly one root node, also there is always only one path inside the XML tree

from the root to any other node.

Example 2.4.1 <rootnode> ... </rootnode>

Element Node Element nodes represent, as the name says, XML elements. Elements can also

have children elements or some text content that is described by other node types.

Example 2.4.2 <anelement> ... </anelement>

Attribute Node This kind of node represents an attribute associated with an element.

Example 2.4.3 <element attribute="Value" ...>

Beside these types of nodes, to which everyone with at least a minimal knowledge of XML (from

the dedicated section above) is probably familiar, there are some other nodes, which are less frequent

inside an XML document:

CHAPTER 2. TECHNICAL BACKGROUND 29

Namespace Node They represent namespace definitions (either prefixed or not).

Example 2.4.4 <stewie xmlns:devil="http://www.stewie.com" ...>

Processing Instruction Node These nodes describe some data processing; although the format

is similar to an XML document type declaration, mostly because of quite the same start and end

tags, the document type declaration is not a processing instruction node, in fact it is not considered

at all, because of being part of the XML syntax for storing and transmitting and recognizing XML

data.

Example 2.4.5 <? ... ?>

Comment node These node are used to insert user targeted comments inside an XML document.

A comment does not interfere with the XML syntax, and can be used regardless of a DTD or Schema,

without invalidating the document.

Example 2.4.6 <!-- Here’s a comment -->

Text node They represent the text (that is, non-XML content) inside an element node.

Example 2.4.7 <element> Some text </element>

There are some constructs that are not listed, but that belongs to an XML document: CDATA

sections, entity references, and document type declarations. The XPath language cannot simply deal

with these entities and ignores them, therefore the root node of the XPath data model is different

from the root element in the Document Object Model of the same XML document.

Now that all available node types that can be found inside an XML document are clear to the

user, it is time to explain the XPath syntax used to retrieve a particular node or a set of nodes.

Location Path

The Location Path is the essential part of the XPath syntax. By mean of a set of rules it is possible

to construct complex expressions to locate every portion of an XML document, and extract valuable

information from it.

These expressions are evaluated by the XPath engine against the document, and the returned

value of this evaluation can be of one of the following types:

Booleans Boolean values are tipically returned by comparation operators, and are binary data

whose value can be either true or false. There exist no Boolean literals in XPath; to get boolean

values it is necessary to use the true() and false() functions as substitutes.

CHAPTER 2. TECHNICAL BACKGROUND 30

Numbers All numbers in XPath are 8-byte, IEEE 754 floating point doubles: for comparison

their data type similar to the double numerical type found, for example, in the Java programming

language. An XPath number can represent positive or negative values, with a range from 5e-324

(minimum positive value) to 1.7976931348623157e+308 (maximum positive value). Additionally

also special values defined by the specification are included, such as Inf (Positive Infinity), NInf

(Negative Infinity) and NaN (Not a Number).

Node-Sets Represents a set of nodes that can be of one of the previous listed types. A node-set

can contain zero, one or more nodes.

Strings Strings are sequences of Unicode characters, enclosed in single or double quotation marks.

The quotes are not themselves part of the string, and a string cannot contain the same type of

quotes that delimits it.

Now, lets have look how to retrieve data, that is how to construct an XPath expression that can

be evaluated by an XPath engine in order to return specific information from an XML document.

First, it must be said that there are two ways to write valid XPath expression, an abbreviated

form and a long one.

The abbreviated form looks very similar to Unix paths, and is constructed with slashes, dots,

etc. whereas the long form is constructed of tree parts: the axis, one or more node tests and an

optional part called predicate.

Location paths can be either absolute or relative: absolute location path starts with a slash (

/) and a relative location path does not. In both cases the location path consists of one or more

location steps, each separated by a slash. The difference between these two is that the first is valid

from every part of the XML document we are at (because it always make references starting from

the root node) whereas a relative location path is only valid from a particular position inside the

tree. Each location step is evaluated relative to a particolar node in the document called context

node, which is the result of the evaluation of the preceding location step.

Example 2.4.8 Absolute and relative location paths

Absolute:

/path/to/my/node

Relative:

to/my/node

Supposing that we are at node path, the two location paths point to the same node ”node”.

The concept of relative location paths shows that XPath also defines a concept of context in

which the system is currently at. This context can be any kind of node, and each successive relative

CHAPTER 2. TECHNICAL BACKGROUND 31

XPath expression is evaluated against it. We call every successive expression an XPath step that

is evaluated against the nodes in the current node-set, resulting from the previous step. An XPath

expression is always evaluated against a set of nodes resulting from another expression or path.

Long form

This section analyzes the long form, which is the most complete form, but also the least used one

because in most cases it is too much textttose for practical use. By the way, this description is useful

to understand how the XPath location path is used to retrieve nodes.

An XPath expression has the following syntax:

Note 2.4.1 XPath expression syntax

Axis:NodeTest[Predicate]

The current location is omitted, because it is implicit.

Axis

The first part of an XPath expression is called Axis, and it is used to define in which direction,

starting from the current location (or context) the search would continue. There are many available

axes, which refer to the current node or current node set.

self It represents the node itself

child All child nodes of the current node set (it is the default node, so it can be omitted).

descendant All nodes contained in the set of nodes (children, children of the children, etc.).

descendant-or-self All descendants of the set of nodes and the node itself.

parent All parents of the nodes in the set or the parent of the node itself.

ancestor All elements and the root nodes that contain the set of nodes (it can be viewed as a

reversed descendant axis).

ancestor-or-self All elements and the root node that contain the set of nodes and the node itself.

preceding All nodes that precede the set of nodes, that is nodes that terminate before the set of

nodes.

CHAPTER 2. TECHNICAL BACKGROUND 32

preceding-sibling All siblings that precede the current set of nodes, that is, siblings that termi-

nate before the beginning of the set of nodes.

following All nodes that follows the current set of nodes, that is, nodes that begin after the current

set of nodes.

following-sibling All following siblings of the current set, that is, siblings that begin after the

current set of nodes.

attribute All attributes of the current set of nodes.

namespace Namespaces associated with the current set of nodes.

Note test

To filter out nodes resulting from the search starting from the current context, in the direction

specified by the axis, a test parameter can be used. Available test nodes are:

name Each element or attribute with that name in the specified axis direction

* Each element in the current axis

prefix:* Each element or attribute with the namespace ’prefix’ in the axis direction

comment() Each comment node found

text() Each text node found

node() Each node found

processing-instruction() Each processing instruction found along the axis direction

processing-instruction(”target”) Each processing instruction that refers to target in the axis

direction

Predicates

As the relevant set of nodes has been determined by mean of a selection, an axis and a node test,

it is possible to use predicates to yet refine the search. The predicate (or operator) is written after

the axis::nodetest part, inside square bracets [...]. As predicates are the same for both long and

short form, they will be discussed later in this section.

CHAPTER 2. TECHNICAL BACKGROUND 33

Abbreviated form

The abbreviated form is the most used one because of its simplicity and clarity. By the way it

is somewhat limited in respect to the long form, because there are eight axes missing: ancestor,

following-sibling, preceding-sibling, following, preceding, namespace, descendant, ancestor-or-self.

Selecting nodes

To select nodes using the abbreviated form, to which successive relative XPath expressions will refer,

expressions shown in Table 2.1 can be used.

Expression Description
nodename Selects all child nodes of the node
/ Selects from the root node
// Selects all nodes nodes in the document from the current node
. Selects the current node
.. Selects the parent of the current node
@ Selects the attributes

Table 2.1: Abbreviated form for selecting nodes

Operators

In XPath there exist two types of operators, arithmetic and boolean ones. Each operator has a

given priority, that is used to determine the order in which operators are applied to the current set

of nodes. Operators with the lower priority value are executed first, whereas operators with the

same priority value are executed in no particular order (in fact they are executed in sequence, one

after another).

Arithmetic operators

Arithmetic operators can be used to perform some simple computations. The result of arithmetic

operations is always a number.

Operator Meaning Priority
+ Addition 3
- Substraction 3
* Multiplication 2
div Division 2
mod Remainder 2

Table 2.2: Arithmetic operators

CHAPTER 2. TECHNICAL BACKGROUND 34

Boolean operators

These operators are used to compare objects; the result is a boolean value either true or false.

Operator Meaning Priority
- Negation 3
< Less than 4
<= Less than or equal 4
> Greater than 4
>= Greater than or equal 4
= Equal 5
!= Not equal 5
and Boolean AND 6
or Boolean OR 7
| Union 8

Table 2.3: Boolean operators

Functions

XPath offers a number of functions that can be used inside expressions. These functions act on

nodes or objects, and can be grouped inside four categories:

- Functions on sets of nodes

- Boolean functions

- Functions on strings

- Numerical functions

Functions on sets of nodes

These functions can be used when the current context (resulting from the previous location step)

results in a set of nodes.

last() Returns the number of nodes inside the set.

position() Returns the number corresponding to the position of the current node inside the set.

count(node set) Returns the number of nodes inside the set provided as argument

id(objet) Returns a node set containing the elements that match the values specified as argument

to the function; arguments must be separated with a colon.

CHAPTER 2. TECHNICAL BACKGROUND 35

local-name(node set) Without an argument it returns the name of the context node; by speci-

fying as argument a set of nodes it will return the name of the first node of the set.

namespace-uri(node set) Without an argument it returns the URI of the associated namespace

of the current context; by specifying a set of nodes as argument it will return the URI associated to

the first node.

name(node set) Without argument it returns the qualified name of the current context, with a

set of nodes as arguments it will return the qualified name of the first node.

Boolean functions

Boolean functions apply on objects and result in true or false values.

boolean(object) Converts the specified arguments into boolean values; zeroes, NaN, empty

strings and empty node sets are converted into false, everything else into true.

not(object) Inverts its arguments (that is, inverts the boolean value returned from objects).

true() Always returns true.

false() Always returns false

lang(String languageCode) Returns true if the selected node is written in the same language

as the argument.

Numerical functions

Numerical functions are used to perform arithmetic operations or to convert other objects to a

numerical value.

number(object) Converts the object to a number; the following rules apply: a string, if not

representing a number, is converted to a NaN (Not a Number), a boolean true value is converted in

1, a false one into 0.

sum(node test) Converts each node into a set of nodes (each node converted to a number by

mean of the same rules as for the number() function), and calculates the sum.

floor(number) Returns the greatest integer value lower than the argument.

CHAPTER 2. TECHNICAL BACKGROUND 36

ceiling(number) Returns the smallest integer value greater than the argument.

round(number) Returns the integer value closer to the argument.

Considerations

XPath is a very powerful language to reference nodes (and information) inside an XML document.

It is also extremely easy to use, because it relates directly to the tree structure of data. Inside

roXanne Framework, almost every operation is performed on nodes, so XPath becomes extremely

important as a way to locate them. Currently the “stable” XPath recommendation from the W3C

working group is 1.0 (the same version available in this framework); version 2.0, currently being a

draft,,, will be much more powerful and able to better deal with some less used features of the XML

syntax, such as namespaces.

2.4.2 XUpdate

XUpdate is an XPath-based XML transformation language [15], like XSLT [14]. An XUpdate docu-

ment is an XML document that specifies what changes should be made to another XML document.

Actually, XUpdate is neither a W3C Recommendation nor an ISO or IETF standard; it is just

a project of the XML:DB Initiative’s XUpdate Working Group, and it never advanced beyond a

Working Draft published in September, 2000. By the way it is extremely simple to use and got

implement in various XML based products, such as this framework.

In this section a brief description of current XUpdate features is given; the complete DTD is

found in Appendix A.

Selections

An XUpdate expression always refers to a target node. This node is selected by mean of an XPath

query set by mean of the select attribute. If the XPath search is invalid an error is returned, if no

node is found at the specified location, no error is raised.

Modifications

An update command is represented by an xupdate:modifications element in an XML document.

An xupdate:modifications element has some mandatory attributes, such as a version attribute,

indicating the version of XUpdate that the update requires (currently the supported XUpdate version

is 1.0).

The xupdate:modifications element may contain different types of elements, each describ-

ing a possible modification: xupdate:insert-before, xupdate:insert-after, xupdate:append,

CHAPTER 2. TECHNICAL BACKGROUND 37

xupdate:update, xupdate:remove, xupdate:rename, xupdate:variable, xupdate:value-of, and

xupdate:if.

Because of the draft status of this language, some instruction (such as conditional processing or

element renaming) have not yet been defined and implemented.

Inserting content

Insertion commands allow to insert XML data inside the document, at a specified position. It is not

only possible to insert single elements, but also tree fragments (an element and some descendants), at-

tributes and text content. Insertion commands are defined by two elements: xupdate:insert-before

and xupdate:insert-after. As the name says, the first type defines an insertion before the se-

lected node, wheras the second defines an insertion after the selected node. The selected target node

is to be specified with a select attribute of one of these nodes, by mean of an XPath expression

that must evaluate to a set of nodes.

Insertion nodes can contain additional elements that specify what should be inserted:

xupdate:element This element is used to add an new element. It accepts a name attribute to

specify the name of this new element.

Example 2.4.9 xupdate:element command and result

This example:

<xupdate:element name="book">

<title>Bald in the land of big hair</title>

</xupdate:element>

Would produce this:

<book>

<title>Bald in the land of big hair</title>

</book>

xupdate:attribute This command is used to create new attributes inside the target node, which

is to be specified using the xupdate:element element.

Example 2.4.10 xupdate:attribute command and result

This example:

<xupdate:element name="book">

<xupdate:attribute name="ISBN">0060955260</xupdate:attribute>

</xupdate:element>

CHAPTER 2. TECHNICAL BACKGROUND 38

Would produce this:

<book ISBN="0060955260"/>

xupdate:text This element is used to insert text content at a specified location.

xupdate:processing-instruction This will create a processing instruction node. The name at-

tribute is used to specify the name of the processing node. Every other attribute and the content of

this node will be added to the processing instruction element.

Example 2.4.11 xupdate:processing-instruction command and result

This example:

<xupdate:processing-instruction name="example-process">

type="xlst"

</xupdate:processing-instruction>

Would produce this:

<?example-process type="xlst"?>

xupdate:comment With this instruction it is possible to insert a comment. The text of the

comment is to be set as the content of this element.

Example 2.4.12 xupdate:comment command and result

This example:

<xupdate:comment>

This is a comment

</xupdate:comment>

Would produce this:

<!-- This is a comment -->

Appending content

Beside inserting new content in an XML document, XUpdate also allows to append new data to

existing elements by mean of an xupdate:append node. Usage of this instruction is similar to

inserts, as the target node to which data is to be append must be specified by mean of a select

attribute. Additionally, the xupdate-append element also accepts a child attribute to specify an

CHAPTER 2. TECHNICAL BACKGROUND 39

XPath expression that must evaluate to an integer value; this value is used to determine the position

within the children nodes of the target element where new content is to be append at.

Nodes types that can be appended are the same as for the insertion operation: xupdate:element,

xupdate:attribute, xupdate:text, xupdate:processing-instruction, xupdate:comment.

Example 2.4.13 Append content example

This example:

<xupdate:append select="/addresses" child="last()">

<xupdate:element name="address">

<town>San Francisco</town>

</xupdate:element>

</xupdate:append>

Would produce this:

<addresses>

<address>

<town>Los Angeles</town>

</address>

<address>

<town>San Francisco</town>

</address>

</addresses>

Updating content

It is also possible to modify (update) existing content, by mean of the xupdate:update instruction.

This element is similar to previous modifications, in that a target node or nodes must be specified

using the select attribute.

Example 2.4.14 Updating content example

This example:

<xupdate:update select="/addresses/address[2]/town">

New York

</xupdate:update>

Would produce this:

<addresses>

<address>

CHAPTER 2. TECHNICAL BACKGROUND 40

<town>Los Angeles</town>

</address>

<address>

<town>New York</town>

</address>

</addresses>

Removing content

Removing content is just as easy as adding it and is performed by mean of an xupdate:remove

instruction. This element takes only one attribute, select, to specify which node or nodes to

remove.

2.4.3 XQuery

The XPath description in the previous section was very extensive, and this is motivated by the fact

that, as explained, it is an essential language to manage data stored within roXanne Framework.

On the other side, XUpdate provides simple, intuitive and effective methods to update existing

information. In the XML world there exist also another language meant to retrieve and update data

in XML documents called XQuery [4].

XQuery is a query language (that also offers some programming language features) that is de-

signed to query collections of XML data, and can be compared to SQL. XQuery and parts of XSLT

2.0 and XPath 2.0 are being jointly developed by the XML Query working group of the W3C. By

the way, the XQuery language has not yet achieved the W3C’s Recommendation status, and for

this reason there are not so many engine implementations available (nor it is currently supported

by this framework). Beside that, we feel that it was at least important to mention it, because in the

future, it will probably became the language of choice for querying XML databases. By the way as

this framework only needs a simple solution to the querying issue, this language it is somewhat “too

much” complicated for everyday use.

Features

XQuery provides a mechanism to extract and manipulate data from XML documents or any data

source that can be viewed as XML, such as relational databases or office documents. XQuery

uses XPath expression syntax to address specific parts of an XML document on which additional

functions and operators apply. XQuery provides a mechanism to dynamically generate new content

(interpreted results) using a declarative, functional, expression (programming)-based syntax.

One of the advantages of XQuery is the fact that XML is considered as a native data type,

meaning that it can be included inside queryies without requiring quoted strings or object calls (in

CHAPTER 2. TECHNICAL BACKGROUND 41

fact, XML elements are separated from enclosed expressions using curly braces).

2.5 Concurrency

Database systems providing parallel access to multiple users must ensure that concurrent access do

not conflict. Concurrency management that guarantees data integrity is essential, and is strongly

related to the concept of transaction.

A transaction is a set of operations executed by the database system that always leaves the data

in a consistent state [46]. Integrity is enforced by requiring that transaction processing features the

four ACID properties: atomicity, consistency, isolation, and durability [10].

Atomicity forces a transaction to be completely executed: if execution fails at some point, all

intermediary results in the database must be canceled.

Consistency means that a transaction executed on consistent data must result in consistent data:

if there are no conflicts at the start of the transaction, there must be no conflicts at the end.

Isolation ensures that two or more concurrent transactions do not interfere each other. In other

words, the result of parallel execution of transactions must be the same as for serial execution of

them.

Durability guarantees that once a transaction has been completed it persist, and can’t be undone.

This property is important because it ensures consistency in case of system failure (either software

or hardware).

2.5.1 Serialization

Concurrent transaction processing requires a synchronization mechanism that must ensure the prin-

ciple of serialization to ensure that conflicts are correctly solved. The principle states that a correctly

synchronized system must ensure that result from concurrent execution must be the same as for serial

execution.

To determine if in a set of transactions there exist conflicts that can preclude serialization, an

in-deep analysis of read and write instructions of each transactions is required.

Figure 2.3 illustrates an example of concurrent transaction execution. Each transaction reads and

writes some shared variables (A, B and C) and does some computation (increment and decrement).

As every modification is not immediately (atomically) written to memory, concurrency problems can

arise: for example in transaction 2, between B+1 calculation and writing of the result back in B,

transaction 1 reads the same variable and gets a wrong value. The result is that variable B is only

decremented by 1 because its value after increment by transaction 1 is overwritten. In particular,

conflics happen when a read operation is followed by a write, or if a write operation is followed by

another write.

CHAPTER 2. TECHNICAL BACKGROUND 42

By writing a journal of read and write operations of variables used by every concurrent transaction

it is possible to identify possible conflicting operations; actual conflicts can then tested by mean of

a precedence graph.

Figure 2.4 depicts the journal and precedence graph for the shared variable B: first read-write

and write-write situations are identified in the journal, then they are represented in the graph as

arcs going from one transaction to another, depending on the execution order.

To determine if involved transactions are serializable, the following criterium applies:

“A set of transactions is serializable iff the corresponding precedence graph does not

contain any cycle.”

The previous example is clearly non-serializable. Serializability of transactions must be verified

for every shared data accessed: if the test fails in at least one case, the considered set of transactions

is not serializable.

To allow serializability there exist pessimistic approaches, which try to avoid conflicts between

transactions as soon as possible, and optimistic approaches, which solve the serialization problem

by canceling conflicting transactions.

2.5.2 Pessimistic approaches

A way to solve conflicting situations is to introduce exclusive locks on shared data. As a transaction

needs access to a shared object it has to acquire a lock on it; if other transactions have to access the

same object they are set to wait until the lock is freed.

In order to guarantee serializability, the locking and unlocking phases must follow a locking

protocol.

Two-phase locking protocol The two-phase locking protocol requires that locking and unlocking

requests are performed in two phases:

- Lock acquisition: the transaction requests all the necessary locks, not necessarily at the

same time. If the transaction releases a lock then it cannot obtain any new locks.

- Lock release: all acquired locks are progressively released. During this phase the transaction

may not acquire any new lock.

It is important that once the transaction releases a lock, it enters the shrinking phase, that

forbids issuing more lock requests. In general, the two-phases locking protocol guarantees seriability

of concurrent transactions [46]. Unfortunately two-phase locking is not safe from deadlocks [34].

CHAPTER 2. TECHNICAL BACKGROUND 43

Figure 2.3: Example of concurrent transaction processing

Figure 2.4: Journal and precedence graph for variable B

CHAPTER 2. TECHNICAL BACKGROUND 44

Pessimistic concurrency control When there exist no conflicts in concurrent transaction ex-

ecution, two-phase lock can slow down considerably the processing. Additionally it is often not

desirable to have global locks on the whole data structure, but only locks on smaller parts of the

database. Locking granularity is therefore an important factor that influences processing speed.

Data organized in a tree structure can also exploit hierachical dependences to optimize locking

management.

Another pessimistic approach is to distinguish between read and write locks. Read locks, also

called shared locks, allows accessing to a resource for reading only. In contrast, write locks, or

exclusive locks, allow full read and write access to the object.

Finally also timestamps can be used to ensure serialization: every operation is marked with a

timestamp, and before being applied the system verifies the chronological order of each one.

2.5.3 Optimistic approaches

Optimistic approches are based on the idea that conflicts between concurrent transactions are rare.

Instead of employing locks each transaction is validated before changes take effect: this way trans-

action processing can be speed up considerably.

Transaction execution based on optimistic synchronization is divided in three phases: the

read phase, the validation phase and the write phase. Modification are first executed on a private

copy of the data, then in the validation phase checks are performed to verify that no conflicts

exist between updates from concurrent transactions. If no conflicts exist changes are applied to the

database, it they do exist the transaction is canceled.

To establish a correct transaction order, it is important that timestamps marking the start of the

validation phase are used. To determine if two concurrent transactions are serializable the following

method is used:

- Let A...Z be a set of transactions, sorted by the time they entered the validation phase

- Let L be the transaction to be validated.

- Let L,M,N...P be transactions concurrent to L being already validated as L was in the read

phase.

- Objects read by transaction L need to be verified, because transactions L to P could have

modified them.

- Let Read(L) the set of objects read by L and Write(L,M,N...P) the set of objects written by

the other transactions.

CHAPTER 2. TECHNICAL BACKGROUND 45

With the above hypothesis, the seriability criterium says:

“In an optimistic synchronization approach, a transaction L is serializable iff the

Read(L) and Write(L,M,N...P) sets are disjoint.”

2.5.4 Deadlocks

Concurrent transaction execution is tipically performed by mean of different threads. As mentioned

before, a pessimistic approach requires the use of locks to prevent concurrent access to the database;

unfortunately this introduces the risk of deadlocks. A deadlock condition involves threads and

resources and happens when each thread is waiting for one of the resources, but all of them are

already held. The problem is that all threads are waiting for each other, and are locked because

none of them will release the resource it holds unless it can acquire the one it is waiting for.

Design and development of multithreaded applications involving shared resources and locks there-

fore requires attention to prevent these deadlock situations.

Chapter 3

RoXanne Framework

3.1 Chapter overview

This chapter describes the application that has been developed to solve the long-term data storage

problem. This description of the framework is strictly from the logical point of view, as implemen-

tation details are better explained in the following chapters; nevertheless this chapter also motivates

some of the design choices taken.

3.2 What is roXanne Framework

RoXanne is a software application written in Java meant for secure long term data storage based

on the XML format. The key points of this solution are:

- It is an exploitable data storage solution, because it supports native XML storage as well XML

querying and modification languages such as XPath and XUpdate.

Being able to store data in a structured format is extremely important, because it helps

preserving information organization. Most real world and computer data abstraction can

be represented with the hierarchical nature of the XML language. The XML language is

also suited for long term information storage because it is text-based, open, patent-free and

platform independent.

On the other side, querying languages helps retrieving and modifying information in a simple

manner, which is an important feature for a data storage solution.

- It is secure, because it allows to protect sensible data by mean of encryption algorithms. Se-

curity in long term storage is essential, because there is no mean to guarantee privacy and

46

CHAPTER 3. ROXANNE FRAMEWORK 47

protection by mean of simple access control. A physical protection of data using cryptogra-

phy is therefore a must. To preserve the long-term storage purpose, standardized encryption

formats are used, such as XML-Encryption.

- It is designed as a modular client-server framework leaving place for many enhancements and

extensions: each component can be replaced or extended.

The two-tier architecture allows better exploitability in productive environments, where storage

solutions are to be used by multiple client applications.

3.3 Framework structure

Roxanne Framework has been designed from the ground up as a client-server application: accessing

XML data is done by using a client application that connects to the server and communicates with

a defined protocol. Building a large monolithic application is probably the simplest way to test at

least a prototype of a working application. In fact, avoiding concurrent access by multiple users can

make the whole framework a lot easier to develop, but then instead of a large application, all the

work could be reduced to just a simple dynamic library.

Separating the server part and the client one has several advantages: first it is possible to install

and run the server on a much more capable machine, with big storage and memory space as well

as much more processing power, so that managing information is a lot faster than it would be if

everything is installed on a “standard” workstation. Another reason is security: a central server

can be made secure easily than dozen of clients; also the fact that data is stored in a single location

means that changes are immediately visible by all clients connected to the server, without needing

to replicate and spread them to everyone.

It should be noted that this framework manages data directly in XML format, compared to

common databases with non-native XML support that only provide XML by mean of output and

input filters or middleware that performs conversion from the relational model to XML and vice-versa

[30, 31].

The framework is composed of three components:

- x.core : this module defines the server application that stores and manages data, and accepts

queries from client applications.

- x.click : this is an example client application offering access to all features of the server. This

graphical user interface also allows simplified management of cryptographic keys and wizard

procedures to speed up work.

- x.mill : a database migration library/tool that is integrated within x.click. With x.mill it

is possible to import data from and to an external database in XML format.

CHAPTER 3. ROXANNE FRAMEWORK 48

3.3.1 Two-Tier Software Architecture

The framework is based on a two-tier software architecture [32], also known as client-server model,

which is composed of a server layer (the provider of the service) and a client layer (the requester of

the service). The architecture is divided in three components:

- Data management, data storage and retrieval

- Data processing

- User interface, user interaction management

Data management is performed by the server component (x.core) only, and consist in storing and

retrieving XML data as well as offering methods to access information from external applications.

Data processing is performed both on the server side (for example for things related to cryptography)

and on the client side (because XML data is normally processed by an application on the client

machine). Finally, user interaction management is completely done by the client application, which

can be either the x.click component of the framework or a custom application making use of some

kind of adapter library to issue requests to the server. Figure 3.1 illustrates an overview of the whole

framework.

A two-tier architecture allows a clean and modular application design, because it is possible to

separate the user interface from the data management and storage parts. Communication between

the server and the client is low as most of the data processing (namely things that do not involve

server’s built-in security features) can be performed on the client layer. Overall data security also

takes advantage of this design because cryptography is completely managed on the server.

The only major drawback is scalability: two-tier architectures do not scale beyond small en-

vironments because clients connections are directly managed by the server. By the way, goals of

this project do not include high performance data serving, which would have been also difficult to

consider due to the high computation requirements of cryptographic methods.

3.3.2 Use in a three-tier architecture

The x.core component can also be used in a three-tier model as a data storage component. In fact

this use is perhaps the most common in productive environments, because XML data is expected

to be further processed by other specialized applications. Figure 3.1 shows such implementation

by mean of a database adapter which allows a middleware application retrieve and further process

data before presenting results to the user. The adapter makes also possible to hide the client-server

protocol details and exploit abstractions and features provided by the target language.

An advantage of such approach is that data can be really protected as soon as it gets generated

by the client or middleware applications. Additionally by mean of a middleware software it would

be possible to manage a cluster of servers running the x.core component.

CHAPTER 3. ROXANNE FRAMEWORK 49

Figure 3.1: Framework overview

CHAPTER 3. ROXANNE FRAMEWORK 50

3.4 x.core component

The role of the x.core component is to manage the information and offer the client a way to access

it; because of the security requirements of this project, there is some processing on the server to

assure data protection using cryptographical methods.

Figure 3.2 shows a schematic overview of the component internal organization. The server block

is responsible for accepting incoming client connections, and for parsing and executing requests.

Sessions provide some persistent user’s information storage on the server: as it will be better

discussed later, by mean of session objects it is possible to upload encryption and decryption keys

on the server in order to simplify security management.

The data management part is responsible of storing the XML as well as offering methods to

retrieve and modify data . Finally, the largest part of the x.core component is required for security

management: this block interacts with other blocks to provide security features such as encryption

and decryption of data.

3.4.1 Data management

XML data is managed by mean of a DOM structure that also offers support for transparent encryp-

tion. The data structure is not directly accessed by the user, and data retrieval and modification

are performed by mean of the XPath and XUpdate languages.

The DOM structure has been extended to feature transparent cryptographic facilities: this

enhancement allows searching and modifying data in document fragments encrypted with XML-

Encryption.

Transparent encryption is an unique feature of roXanne Framework: it allows to access, search

and manage information also in encrypted data blocks without requiring explicit intervention by the

user to decrypt (and re-encrypt) them.

3.4.2 Security

Security facilities, such as cryptographic methods, are made available by a Java’s JCA [24] provider.

Different encryption methods are available, either relying on public key algorithms or on simmetric

ciphers.

The security management part is the most important of the x.core component, due to the nature

and the goals of the framework.

3.4.3 Server access

As the server and the client application can be executed on different machines, a way to allow remote

communication has been devised. The protocol used is extremely simple and is based on the XML

CHAPTER 3. ROXANNE FRAMEWORK 51

Figure 3.2: x.core component schematic overview

CHAPTER 3. ROXANNE FRAMEWORK 52

language sent over a TCP connection.

The server component also parses and processes requests concurrently, thanks to a multi-threaded

design (which also requires a careful management of concurrent accesses).

3.5 x.click component

The x.click component is an example of possible graphical user interface and client application. It

can be used to access information on the server as well as performing encryption and decryption of

data.

The interface does not require knowledge of the underlying client-server protocol, and features

graphical assisted procedures help the user perform some tasks, such has managing keys on the

server or import and export data.

Chapter 4

Implementation

4.1 Chapter overview

This chapter describes the implementation details of the framework, with particular attention to the

server component. Data management techniques, concurrent server access and the cryptographic

infrastructure are also explained, as well as the protocol used for client-server communication. Ad-

ditionally, useful information about framework operation and internal component interactions are

also discussed. To better understand this chapter it is suggested to keep an eye on the source code;

if needed, some code excerpts are provided.

4.2 Programming language and libraries

The whole framework has been developed using the Java Programming language. At this time,

version 1.5 is available, and offers some advantages over older version, such as generic types. One

important factor of choice was the availability of support libraries for the chosen programming

language, and Java has a very large codebase. For the prototyping stage, the language of choice was

Python; a big advantage of this language is that it allows to quickly transcribe ideas into working

code, easing the development process; as concepts were tested, algorithms were coded with Java [3].

Some required parts of the framework have not been developed from scratch, but freely available

software libraries have been used. By taking advantage of the open-source licenses applied to these

components custom modifications have been possible, thus reducing the development effort and

allowing to concentrate on this project’s specific issues, such as cryptography and security.

53

CHAPTER 4. IMPLEMENTATION 54

4.2.1 JDOM

The JDOM library [21], developed by Jason Hunter and Brett McLaughlin, is, quite simply, a Java

representation of an XML document. JDOM provides a way to represent that document for easy

and efficient reading, manipulation, and writing. It has a straightforward API, is a lightweight and

fast, and is optimized for the Java programmer. It’s an alternative to DOM and SAX, although it

integrates well with both DOM and SAX.

JDOM is not a wrapper for the W3C’s DOM, or another version of DOM. JDOM is a Java-based

“document object model” for XML files. JDOM serves the same purpose as DOM, but is easier to

use.

JDOM is not an XML parser, like Xerces or Crimson. It is a document object model that uses

XML parsers to build documents. JDOM’s SAXBuilder class for example uses the SAX events

generated by an XML parser to build a JDOM tree. The default XML parser used by JDOM is the

JAXP-selected parser, but JDOM can use nearly any parser.

4.2.2 Jaxen

The Jaxen project is a Java XPath Engine [22]. Jaxen is a universal object model walker, capable of

evaluating XPath expressions across multiple models. Currently supported are dom4j [33], JDOM,

and all implementations of the W3C’s DOM interface [36]. It was chosen for this project because of

its compatibility with JDOM.

4.2.3 Jaxup

Jaxup [23] is Java XML Update engine developed by Erwin Bolwidt. It is used to parse and execute

XUpdate queries with JDOM. This library makes use of the Jaxen engine to resolve nodes by

evaluating XPath expressions.

4.2.4 Bouncy Castle Crypto package

The Bouncy Castle Crypto package [25] is a Java implementation of cryptographic algorithms, it was

developed by the Legion of the Bouncy Castle. Use of separate JCA [24] provider is necessary because

the Java classpath itself only contains the interfaces defining what methods should be provided by

cryptographic libraries. Additionally current US Law Export Regulations [5] restrict the original

Java JCE APIs to use solely within the United States Of America, so internationally available Sun’s

own JCE [26] implementation lacks some strong cryptography algorithms. In contrast, the Bouncy

Castly implementation does not have any limitations and provides complete cryptographic support.

CHAPTER 4. IMPLEMENTATION 55

4.2.5 Jargs

Jargs [28] is a library aimed to parse command line arguments passed to an application. It is used

in the server application to allow some command line switches and options.

4.3 x.core class overview

The conceptual schema of x.core component presented in the previous chapter, is reflected in the

actual class organization, as shown in Figure 4.1. Each package corresponds to a different functional

block:

- Classes related to client and server interaction, the TCP multi-threaded server and connection

parsing are located in the server package.

- Classes used to manage session objects, persistent user’s data on the server and concurrent

requests isolation management are found in the sessions package.

- The security package contains all cryptographic related classes, such as encryption and de-

cryption methods implementation, key and algorithms interfaces and key ring management

classes.

- The environment package is related to data management, in particular to transparent access

to encrypted fragments of the XML document.

The implementation is also based on a number of other support classes, which include the libraries

presented in the previous section, classes to manage configuration inside the server and classes that

initialize other components at server’s startup.

4.4 Data management

To store the XML document during processing, the x.core component makes use of a DOM tree

structure.. The Document Object Model is the standard method to manage this type of structured

documents. Re-implementing a whole DOM library was not feasible (due to time constraints), so

an already available (and well tested) implementation was chosen: JDOM. This library has several

advantages over other DOM implementations, first the fact that it is freely available under an open

source license (which means that its usage and its modification are legal under the terms of its

license).

JDOM follows well the object oriented paradigm of Java, and resulted to be the easyiest one

to modify by integrating encryption functionalities inside it, without requiring the rewrite of large

parts of the library.

CHAPTER 4. IMPLEMENTATION 56

Figure 4.1: x.core component class overview

CHAPTER 4. IMPLEMENTATION 57

The JDOM library is used to load data from disk and to manage it in memory, as well as save

it back to disk. The fact that everything is done in memory means that all data is available at

any moment, without requiring access to permanent storage, but also imposes a limit on the size of

manageable data. If the memory footprint of the server application grows over the available memory,

the underlying operating system will start swapping on disk, slowing considerably operation. This

limitation can be made less noticeable if the server application is run on a dedicated machine, with

sufficent main memory (RAM) available.

The JDOM implementation is very clean, and consider every XML object in a similar manner:

objects that can contain content implement the interface, and objects that can be contained must

extend the Content class. By making this simple distinction it is possible to abstract every object,

from elements to documents, to attributes, either to be a Parent implementation or a Content

sub-class or both.

Attributes and content for each element are stored inside dynamic lists that extends the

java.util.AbstractList class: for the first the AttributeList class is used, for the latter the

ContentList class is used. The AbstractList class provides well defined methods to manage the

elements they link; the basic method are get and set, which respectively return an element from

the list and set an element into the list. Figure 4.2 shows an element and its content and attributes,

organized in the respective lists.

To support some features required by the roXanne Framework, the JDOM library has been

modified and extended; some of these changes are found in the ContentList class and in the Element

class, and have been required, for example, to distinguish between encrypted or plain nodes, or to

add a protection mechanism needed to ensure that some data be only readable.

A detailed analysis of these changes is given in the next section.

4.5 Transparent cryptography

One of the most important goals of this project was to hide to the user the fact that some data

could have been encrypted. Being able to threat data as if encryption does not exist allows the user

to perform, for example, XPath queries or XUpdate modifications easily and faster inside encrypted

blocks. This framework performs transparent encryption and decryption of data by introducing the

concept of environment. Basically, an environment is an object that contains an XML tree fragment,

like an envelope contains a letter. An important fact about environments is that they are built on

top of the JDOM data structure, or, better said, they integrate well with the existing structure and,

most important, they are hidden to the user.

How the environments model helps hiding encryption (and decryption) of data? Consider the

Example 4.5.1, which shows a simple XML document.

CHAPTER 4. IMPLEMENTATION 58

Example 4.5.1 Sample XML

<mydata>

This is some unencrypted data

<substructure> ... </substructure>

<paragraph> ... </paragraph>

<EncryptedData ...>

...

</EncryptedData>

<example id="roxanne">

</mydata>

In figure 4.3 the corresponding ideal representation of the main environment object is depicted

(in reality each environment only manages pointers to fragments of a JDOM tree and do not contain

the XML document code).

The main environment object, called root environment, always exist, and contain links to

the whole XML document (the JDOM data structure of it); the root environment is different from

other environments: it is created as soon as the base XML document is loaded from disk and parsed

into a DOM tree, and it cannot directly represent encrypted data (which is the purpose of other

environment objects instead). Having only one root element instanced means that it is only possible

to have an XML document loaded at time inside the server; if there’s need to operate on more

XML documents at the same time, (for the moment) the only solution is to execute multiple server

applications that would listen each one on a different port.

Figure 4.4 shows the tree representation of the given XML code, so that parenthood relations are

easier to understand: mydata element contains five children, the EncryptedData one is the fourth

one. The EncryptedData element must follow the syntax given by the XML-Encryption format

introduced in the previous chapter (with some limitations that will be illustrated later).

Encryption hiding comes into play when the application tries to access this data, namely as soon

as the EncryptedData node is referenced inside the DOM tree. This request is trapped by methods

added to the JDOM implementation, and, if needed decryption keys are available (i.e. loaded to

the server), the corresponding decrypted node is returned instead of the encrypted one. What is

internally done is that a new environment containing the decrypted data is created and from now

every access to the EncryptedData node redirects to the root element of the XML fragment inside

that environment. Figure 4.5 shows the new environment that links to the decrypted data.

From the user’s point of view, the new tree representation of data becomes a little different,

because the EncryptedData node becomes invisible, and the people element is now seen as a new

child of mydata (see Figure 4.6). In the situation where the user has no right to decrypt data, the

perceived data tree remains the same as in figure 4.4.

CHAPTER 4. IMPLEMENTATION 59

Figure 4.2: JDOM element model

Figure 4.3: Root environment representation

Figure 4.4: DOM schematic view

CHAPTER 4. IMPLEMENTATION 60

Figure 4.5: New environment for encrypted data

Figure 4.6: Perceived DOM structure

CHAPTER 4. IMPLEMENTATION 61

It should be noted that it is only possible to encrypt (and decrypt) whole single nodes (commonly

referred as http://www.w3.org/2001/04/xmlenc#Element by the XML ENC syntax), not single

attributes or multiple nodes at once. This limitation has been imposed because allowing multiple

node encryption at once cannot be easily hidden (as one node becomes more nodes) and could

interfere with XPath references (if an encrypted node expands to multiple node, references such as

“the third child“ could become invalid if used to reference right siblings of the encrypted node).

Additionally encryption of attributes is not supported by the current specification of the XML ENC

format (and it will presumably never be added, as it has little usefulness).

To keep track of created environments inside a session (and to be able to retrieve existing ones)

a special object called EnvironmentManager is created; environments alone are organized hierar-

chically, with every environment containing a link to its parent. Environments pointers are stored

inside an hashtable and referenced using the EncryptedData object; using this pointer as a key

inside the hashtable, makes the process of checking if an environment already exist faster and does

not require adding special attributes to JDOM nodes.

4.5.1 Parenthood references

The environment model introduces a number of problems regarding element parenthood. As the

DOM tree can be “navigated” not only top-down (using child references) but also bottom-up (using

the element parent reference) or over an horizontal axis (by referencing node siblings), we must

ensure that the right nodes are returned. Consider, for example, the situation where the parent of

the people node is requested; in reality this node has no parent, because it is directly linked inside the

environment object. What is done is that in situations where the parent of a node is requested, and

this node is the root element of an environment (that is, it is the root node of the decrypted XML

data fragment referenced by the environment), the parent node of the corresponding EncryptedData

node is returned.

Concerning siblings the problem is also solved, because they are accessed by first getting the

parent element and then descending to the selected children.

4.5.2 Updating encrypted data

As everything that’s accessing the JDOM (for example the XPath or the XUpdate engines) will get

“fooled” by this trick and get the decrypted data instead of the encrypted one, every modification

that takes place inside an environment should then be reflected back to the EncryptedData node.

First of all, it should be noted that modifying data inside an environment is only allowed if

an encryption key that can be used to re-generate the encrypted information is loaded into the

server; if only the decryption key exist, the corresponding environment gets a read-only flag that

forbids every modification to data inside it (and because of the tree structure of environments, every

sub-environment inherit this read-only flag).

CHAPTER 4. IMPLEMENTATION 62

If the environment data is modified as the client request terminates, the server must ensure that

the encrypted data counterpart also contains these changes, so that further queries (from either

the same client or others) will get consistent information; to do this, the server application simply

has to re-create the EncryptedData elements from the new content. In such a situation, when the

decrypted data reflects the encrypted one, the corresponding environment is said to be updated.

As environments are organized hierarchically (because of the fact that the decrypted data can

also contain other EncryptedData elements and so on), the order by which environments get up-

dated is extremely important: deeper environments must be updated before, because as the server

updates an environment, it is supposed to get also updated and consistent EncryptedData elements

if present within the content. Supposing that environments are organized like in example Figure 4.7,

environments 3 and 5 must be updated before environment 2, and environments 4 and 2 must be

updated before environment 1. Note that while updating, the “encryption hiding trick” described

above is disabled, meaning that encrypted data is returned as it is. Not following a strict updating

order would mean that some encrypted data would be generated from old content.

4.5.3 Element removal

Another problem that arise with the environment model refers to element removal: environments

make the removal of elements from the JDOM tree more difficult because of a number of possi-

ble memory leaks the application should take care of. Once again these problems can be better

understand by mean of a simple example.

Figure 4.8 shows a possible scenario of open environments. Suppose that four environments have

been instanced (Env1, Env2, Env3 and Env4; Env1 could have been the root environment). Each

environment contains a JDOM tree fragment, specifically Env1 references a tree fragment consisting

of seven elements; let upper-case letters (in this case G and F) denote EncryptedData elements,

which then have an associated environment. Let dotted lines denote environment parenthood re-

lations, and arcs the “virtual” link between EncryptedData nodes and the root of the XML data

fragment inside each environment.

Deletion of an encrypted data element

In case of deletion of an EncryptedData element, two cases are possible: either the EncryptedData

element has an associated environment or not. In the second case, the application should simply

delete remove the node and its contents (the Java’s garbage collection will do the rest).

In the first case, things are a little more complicated, as in reality the user never has a real access

to EncryptedData nodes themeselves (F and G in the example), but to the root of the corresponding

environments instead. So, what happens is that only the deletion of these root nodes could have

been requested.

CHAPTER 4. IMPLEMENTATION 63

Figure 4.7: Example of environment hierachy

Figure 4.8: Deletion problem

CHAPTER 4. IMPLEMENTATION 64

What is done in case of deletion of an element is simply checking if the node to be removed

is the root of an environment, and, if it is the case, the corresponding EncryptedData element

gets deleted. Consequently the environment should also be deleted (in order to free memory),

and, because of the hierachical structure also every descendant environment (because it becomes

automatically unreachable). So, if for example the user is requesting deletion of the root element of

environment Env2, node F gets removed along with environments Env2 and Env4.

Deletion of plain elements

Things become much more difficult when normal elements are to be removed. Suppose that the

user wants to remove element d. Node d is removed and then it cannot be accessed anymore, but

memory used by it and by its children as well as memory used by Env2 and Env4 is not freed at all.

This happens because objects representing node d and node F, as well as the whole environments

Env2 and Env4 are still “kept alive“ by the link to these two environments that exists from within

the EnvironmentManager object and that the application is not directly aware of (remember that

Java has an automatic garbage collection mechanism that removes objects from memory only if the

are no more references to them).

There are two solutions to this problem: either the system checks if within the descendants of the

element that should be removed there are EncryptedData elements with associated environments,

and then remove these environments, either it marks all child environments of environment Env2

as possibly unreachable and just gets over it (for the moment).

The solution adopted is the second one, and the reason is that checking the DOM tree downside,

as the first solution requires, has an exponential complexity, where with the other one the complexity

is linear (because, as it will be clear, the tree is walked bottom-up).

By the way, by forgetting the memory leak that is “pending” on the data structure, the element

to be removed has been already unlinked from the tree, so from the user’s point of view it does not

exist anymore; only the “non-freed memory” problem remains, and this issue is solved as soon as

environments are updated.

As said before, even environments that are no more accessible are still in the environment list, and

that’s what causes problems (they are using memory and they can be wrongly updated, requiring

un-needed computation and time). To correct this situation the following solution has been adopted:

for each environment that has been marked as possibly unreachable, the application follows a reverse

path in the DOM tree (by getting the parent of each node encountered) starting from the root node

of that environment. If at some point the root of the XML document (i.e. the root element of

the root environment) is reached, it would mean that the environment is still reachable, if not (i.e.

somewhere in our path we reach a node whose parent is null) it would mean that the environment

is no more reachable, so the system marks it as a dead environment. Marking an environment as

dead clearly affects also its descendant environments, which are also marked as dead (because there

CHAPTER 4. IMPLEMENTATION 65

cannot be more than one path from the root to any node).

The next step that remains to be done is removing all references to dead environments, so that

Java’s garbage collection can free free the occupied memory.

4.5.4 The environment model and JDOM

To make things work, the JDOM implementation should be made aware of environments. As stated

in the previous section, the JDOM library essentially distinguishes between two type of objects:

content and parent. Content are for example Element, Text or Attribute objects, and must inherit

from the Content class, wheras classes implementing the Parent interface are meant to include

content (Document and Element classes are examples that implement the Parent interface).

Classes implementing the Parent interface must maintain a list of their children using some kind

of dynamic lists: attributes are stored in an AttributeList object and other content (Element and

Text children) are stored using a ContentList object.

To support the environment model, beside some additions to the Element class (to correct the

parenthood problem stated before), only the ContentList and AttributeList classes have been

modified. An advantage of these classes is that they inherit from java.util.AbstractList, so that

accessing and dealing with elements is always done by get, set and remove methods.

The get method has been changed so that, if an EncryptedData element is about to be returned,

the framework first checks if decryption is possible; if so a new environment object is created (or

the existing one is used, if applicable), and the root element of this environment is returned. Note

4.5.1 illustrates the pseudo-code executed when the application is trying to access an element (either

encrypted or not), by mean of the get method of the ContentList object of the parent element.

Note that the environment model can be disabled (but not by the user) so that no problems arise

in situations where the real encrypted node is required: for example when updating data from an

open environment the application expects that EncryptedData elements inside it, if present, do not

get decrypted, because this would mean that encryption of sub-environments would get lost.

Note 4.5.1 Get method simplified pseudo-code

if environment model is enabled {

if the element is encrypted {

if can decrypt {

if exist environment {

return root element of existing environment

} else {

create environment

return root element of environment

}

CHAPTER 4. IMPLEMENTATION 66

}}}

else return element

If, for some reason, the decryption fails, the EncryptedData element is returned.

Beside the get method, also the remove method has been modified so that it behaves correctly

in respect of the deletion problems introduced in the previous paragraph. Note 4.5.2 shows the

pseudo-code related to the remove method (for further information please browse the source code).

Note 4.5.2 Remove method simplified pseudo-code

if environment model is enabled {

if element is root of an environment {

remove EncryptedData element

remove associated environment and sub environments

}} else {

remove element

mark sub environments as possibly unreachable

}

Additional modifications relate to modification of data inside the tree: before each modification

(either content or attribute alteration) a test to ensure that data is not contained inside a read-

only environment must be performed. If the user requests alteration of write protected data, no

modification will be done and an error will be returned (this is done by performing a check inside

every method that is supposed to alter data).

Finally, the environment model sets a limit to elements that can be deleted: the root element of

the XML document cannot be deleted, nor replaced by another element (this is not a real limitation,

as the root element name can be freely chosen by providing a custom default XML file or by setting

the name inside the configuration file).

4.6 Cryptographic infrastructure

In previous sections, cryptograhy has been cited without giving any detail on how data is effectively

ciphered and deciphered. When designing the cryptographic part of this framework, it was clear that

this one would have been as general as possible, or not too much tied to the encryption methods im-

plemented. This means that plugging in new encryption methods should have been as easy as possible

and should not have required changing “vital” parts of the framework. For this reason, encryption

algorithms and encryption keys have been abstracted to common interfaces that generalize them.

Concerning the encryption algorithms, their interface is located in file EncryptionMethod.java, in

CHAPTER 4. IMPLEMENTATION 67

package security. Note 4.6.1 shows the methods required by this interface (exceptions have been

omitted here).

Note 4.6.1 Encryption Method interface

public interface EncryptionMethod {

public String encryptData(String data, Object encKey);

public byte[] decryptData(String data, Object decKey);

public int getAlgorithmType();

public String getAlgorithmName();

public void generateKeyPair(Hashtable parameters);

public void generateKey(Hashtable parameters);

public String getPrivateKey();

public String getPublicKey();

public String getKey();

}

Each algorithm must provide these methods and then operate like a black-box. Some methods

refer to public key encryption only, so they have little use for symmetric encryption algorithms (for

this reason their return value is null), and vice-versa. Generally speaking, an encryption method

should be able to provide the following features:

(i) Generate and return valid keys (using the generateKey or generateKeyPair

methods, depending on the type of encryption algorithm). If some parameters

are needed to generate a key (for example a password string), they can be passed

by mean of a dictionary.

(ii) Encrypt data without requiring access to external data structures (the required

key is given as an argument to the relative method).

(iii) Decrypt data.

This abstraction allows to deal with symmetric and public key algorithms in a very general way.

4.6.1 Encryption and decryption procedures

In the first chapter, the XML Encryption format has been introduced, and various aspects of en-

cryption and decryption have also been explained. In this section the actual procedures used to

generate an EncryptedData element from plain XML data as well as the successive decryption to

create a corresponding environment will be discussed.

As said before, this framework only deals with enveloped encryption of whole elements; keys are

always referenced with a ds:KeyName element, that contains an identifier of a key that is supposed

CHAPTER 4. IMPLEMENTATION 68

to be found in the keyring object (see the section about sessions that follows for more information).

The limitation not to use external keys or external data is due to the fact that transparent accessing

encrypted data would have been much more difficult (this doesn’t mean that it is impossible to

implement that, but just that it has not been done yet).

Decryption of data

As an EncryptedData element is about to be traversed inside the JDOM tree, the system tries to set

up a new environment to store the deciphered XML fragment. The Environment Manager make use

of an XMLDecrypt object (defined in XMLDecrypt.java, in package security) to do this. The first

steps involved in this process include the parsing of the EncryptedData element to determine the

encryption algorithm used and the encryption key needed. If the key is not available in the keyring

of the current session the procedure aborts, and the EncryptedData node is then returned as it is.

If keys are available, data is deciphered and then parsed into a DOM tree; the root node of this

document is linked as root node of the newly created environment, and additional information (such

as the key name and algorithm) are saved in the environment object. Finally a pointer to the root

node is returned to the JDOM object that requested the EncryptedData element.

If an environment object is already available, its root node is simply returned. Figure 4.9 shows

an example of access of an EncryptedData node. If the user want to permanently decrypt a ciphered

node, the EncryptedData node is simply replaced with the root node of the plain document, and

the environment object is discarded.

Encryption of data

There are two situations where encryption of data is required: if the user asks for a plain node

to be encrypted and when an environment is modified and changes must be reflected back to the

encrypted data. Encryption is simpler that decryption, because it simply involves the creation of

a new EncryptedData element, and the replacement of the old EncryptedData node with the new

one. As said before, it is important that environments get updated in a reversed creation order, to

ensure that the right data is put into encrypted nodes. Additionally creation of new environments

is disabled during this operation.

4.6.2 Key management

Another thing that makes encryption hiding possible, is by having all needed keys available anytime

without having to ask the user for them when an encrypted node is reached. As it will better

explained later in this document, the server offers a way to keep some user information by mean

of sessions. Sessions are also used to store encryption and decryption keys, without requiring that

the user uploads them before every request; the object that is responsible for key management

CHAPTER 4. IMPLEMENTATION 69

Figure 4.9: Encrypted node access

CHAPTER 4. IMPLEMENTATION 70

is instanced from the Keyring class (defined in file Keyring.java, in package security). Key

management is really simple: as a key is uploaded by the user to the current session, the associated

key object is registered within the keyring. Each key object is referenced by an user provided key id

and the encryption method name to which they are referred; this identifier is also used to refer keys

inside EncryptedData elements in the JDOM tree, so that, if encryption or decryption is required, the

corresponding key object can be easily retrieved. The keyring itself does not make any difference

between keys generated by different algorithms, because key objects have been abstracted to a

common interface valid for every possible encryption method (either for symmetric or asymmetric

encryption). Note 4.6.2 shows the interface devised to manage keys objects.

Note 4.6.2 RXKey interface

public interface RXKey {

public void decode(String data) throws InvalidKeyException;

public String encode();

public Object getKey();

public void update();

}

As keys are uploaded to server, an object implementing the RXKey interface and corresponding to

the selected cipher is created; received key parameters are decoded inside it by the decode method.

The corresponding encryption algorithm can then get a valid key object by calling the getKey

method.

On the other side, when a new key is generated, an RXKey implementation is used to encode it

to a format suitable to be returned to the client application, by mean of the encode method. The

format chosen to distribute keys to clients is XML, encoded with Base64: each method saves data

needed to re-create key objects inside an XML document, which then is encoded using a Base64

algorithm to return a string that can be easily transmitted inside the XML reply to the user.

The encryption methods currently implemented and available inside this framework are AES 128,

DESede (both symmetric algorithms) and RSA 1.5 (asymmetric algorithm). Asymmetric algorithms,

such as RSA are slower that symmetric algorithms, so they are only advisable to protect a small

amount of data. The RSA method cannot perform stream encryption, meaning that data must be

processed in blocks: as every block is encrypted with the same key, encrypting much data, thus

generating many blocks, can represent a security hole. For this reason, it is suggested to encrypt

large data with an symmetric algorithm and only small parts with an asymmetric one.

AES 128 cipher

The AES cipher (acronym of Advanced Encryption Standard, and also known as Rijndael) is a

block cipher adopted as an encryption standard by the US government. It is the successor of

CHAPTER 4. IMPLEMENTATION 71

another cipher, Data Encryption Standard (DES), which is also somewhat available (as TripleDES,

DESede) in this framework. AES was adopted by National Institute of Standards and Technology

(NIST) as US FIPS PUB 197 in November 2001 after a 5-year standardisation process. This cipher

was developed by two Belgian cryptographers, Joan Daemen and Vincent Rijmen, and submitted to

the AES selection process under the name “Rijndael”, a word made from the names of their creators.

AES is a solid cipher algorithm: until now, no successful attack against AES has been recognised.

When the National Security Agency (NSA) reviewed all the AES finalists, including Rijndael, it

stated that all of them were secure enough for US Government non-classified data. In June 2003,

the US Government announced that AES may be also used for classified information:

“The design and strength of all key lengths of the AES algorithm (i.e., 128, 192

and 256) are sufficient to protect classified information up to the SECRET level. TOP

SECRET information will require use of either the 192 or 256 key lengths. The im-

plementation of AES in products intended to protect national security systems and/or

information must be reviewed and certified by NSA prior to their acquisition and use.”[7]

This framework make use of 128 bit keys (from that, the name AES 128) but 192 or 256 bit

extensions can be easily implemented. A problem with some strong encryption algorithms developed

in the United States is a law that forbid their export to some countries.

The AES 128 algorithm key is generated from a character string, that can be considered as a

password (as this algorithm performs symmetric encryption). The XML DTD for this kind of key is

shown in 4.6.3. The AES 128 cipher is referred, within the framework, with the identifier AES 128.

Note 4.6.3 AES 128 Key structure

<!ELEMENT RoXanneAES128Key (EMPTY) #REQUIRED>

<!ATTLIST RoXanneAES128Key password CDATA #REQUIRED>

What needs to be stored is only the password required to generate the key but not the key

itself, which is recreated every time on the server. As this algorithm uses a 128bit key, a

16 character password is required to achieve maximum security. The generated XML

document containing this parameter is then encoded and returned to the user. To re-generate a

valid key object, the key data is decoded, parsed into an XML document and required parameters

are extracted so that a key can be reconstructed.

DESede cipher

DESede, also known as TripleDES or 3DES, is a block cipher based on the Data Encryption Standard

(DES) cipher. The encryption procedure is composed of three steps: first a DES encryption is

performed, then a DES decryption, and finally another DES encryption.

CHAPTER 4. IMPLEMENTATION 72

The DES cipher was selected as an official Federal Information Processing Standard (FIPS) for

the United States in 1976, and was then used internationally. DES is now considered to be insecure

for many applications. The main reason is the size of its keys (56 bits) being too small, meaning that

the algorithm can be “cracked” easily by mean of a brute-force attack. Today it has been replaced

by the AES cipher, but the evolved version of DES, DESede is also considered to be secure[8].

A DESede key has an effective size of 112 bits, which grows up to 156 and 192 bits with additional

required data. As for the AES 128 key, the only parameter required to generate a DESede key is a

password string (of at least 19 characters for a secure password), so its format is very similar to the

previous one. The DESede cipher is referenced as DESede.

Note 4.6.4 DESede Key structure

<!ELEMENT RoXanneDESedeKey (EMPTY) #REQUIRED>

<!ATTLIST RoXanneDESedeKey password CDATA #REQUIRED>

RSA 1.5

RSA is an algorithm for public key encryption. It was the first algorithm known to be suitable

for signing as well as encryption, and one of the first great advances in public key cryptography.

Despite being developed in 1977 by Ron Rivest, Adi Shamir and Len Adleman at MIT (the letters

RSA being the initials of their surnames), this algorithm is still widely used in electronic commerce

protocols, and is believed to be secure given sufficiently long keys [9].

Public key cryptography requires two keys: a public one and a private one. Public keys can be

genenerated from private key data, but the inverse must be very hard.

The format used to store RSA private and public keys by this framework is shown in Note 4.6.5.

This cipher is identified under the name RSA V1 5.

Note 4.6.5 RSA private and public keys DTDs

RSA Private key:

<!ELEMENT RoXanneRSAPrivateKey (EMPTY) #REQUIRED>

<!ATTLIST RoXanneRSAPrivateKey RSApubExp CDATA #REQUIRED>

<!ATTLIST RoXanneRSAPrivateKey RSAp CDATA #REQUIRED>

<!ATTLIST RoXanneRSAPrivateKey RSAdq CDATA #REQUIRED>

<!ATTLIST RoXanneRSAPrivateKey RSAqInv CDATA #REQUIRED>

<!ATTLIST RoXanneRSAPrivateKey RSAdp CDATA #REQUIRED>

<!ATTLIST RoXanneRSAPrivateKey RSAq CDATA #REQUIRED>

<!ATTLIST RoXanneRSAPrivateKey RSAprivExp CDATA #REQUIRED>

<!ATTLIST RoXanneRSAPrivateKey RSAmod CDATA #REQUIRED>

CHAPTER 4. IMPLEMENTATION 73

RSA Public Key:

<!ELEMENT RoXanneRSAPublicKey (EMPTY) #REQUIRED>

<!ATTLIST RoXanneRSAPublicKey RSApubExp CDATA #REQUIRED>

<!ATTLIST RoXanneRSAPublicKey RSAmod CDATA #REQUIRED>

Each attribute is a required parameter for the RSA algorithm. For each keypair, RSApubExp and

RSAmod attributes value must be the same for either the private and the public key. Note that if

keys are generated by the server, random parameter values are used.

4.7 Server implementation

In order to support concurrent access by multiple clients or fast consecutive access by the same

client, a multi-threaded server approach has been chosen. Clients can communicate with the server

by mean of a TCP connection to the server host. The connection is itself not encrypted and highly

insecure, which means that it is only meant for local usage or to use in combination with, for example,

a secure shell (SSH) tunnel. As the server application is loaded, a MultithreadedServer object

is instantiated along with some other support thread; the job of this object is to accept incoming

connection on a predefined port (default 8351) and then fire up a ThreadedQueryHandler thread to

continue work (i.e. reading and processing the request), allowing the server to return listening for

new connections.

By default, the MultithreadedServer object mantains some handler threads allocated, so that

in case of multiple incoming connections, the delay that will be required to create new handler thread

instances is minimized. These threads are organized in a list, and the server simply picks one of

these when needed; as soon as a request terminates, the corresponding handler thread will be freed

and returns available into the list. If threads are not sufficient to process incoming requests, new

ones are automatically instanced.

4.7.1 Why not SOAP or XML-RPC ?

This framework deals almost everywhere with XML data. Altough SOAP [37] or XML-RPC [42]

protocols are very well designed, they pose a big performance problem when remote methods to be

called deal with large sized parameters as it is the case with queries sent to this server.

The bottleneck is due to the fact that, as both protocols are themselves based on XML, each

parameter is processed as a string and each possible invalid XML character is escaped. This means

that an unacceptable overhead is put in both client and server application to send and receive

data. By designing a simplified client/server architecture and protocol it is possible to eliminate this

problem by avoiding unneeded data conversions.

CHAPTER 4. IMPLEMENTATION 74

As an example, some performance tests performed during the test phase of this project have

shown that a simple conversion from XML to a byte array or vice-versa will double the time required

to receive and parse an incoming query.

4.7.2 Request handling

As the server receives a new incoming request, it will delegate its handling to a ThreadedQueryHandler

thread, that will then continue reading from the connection until a complete request has been re-

ceived (freeing the incoming port on the server). Each of these threads has a limited read buffer,

meaning that received requests have a length limit; the choice of a limited size buffer has been made

because of performance and security issues. First, by using a dynamic buffer, reading and storing

data into it becomes orders of magnitude slower that with a fixed size array; second, by allowing

virtually unlimited size queries means that a malicious client can just send garbage data that will

keep the connection open for an undefined amount of time and, in the worse case, will exhaust

memory on the server (as the buffer will continue growing to accept all new incoming data).

As there is no character or symbol used to mark the end of a query, as soon as a valid XML

code is read, the query is considered to be completed (this is done by looking at the open and closed

XML tags, up to the point where all opened tags are correctly closed). When a request is completely

read, a new QueryHandler object is instanced, and the XML code is passed to the execute method

so that the request is parsed. As soon as this call returns, the ThreadedQueryHandler will close

the connection and the corresponding thread will announce itself into the waiting queue of the

MultithreadedServer object.

Request parsing

An incoming XML request is passed to a QueryHandler object and then the execute method is

called. This method creates a new Session object or retrieves and existing one, then parses the XML

request and executes commands inside that session, such as adding or removing keys or performing

XPath or XUpdate queries. As the request is also in XML format, it parsed into a JDOM tree (this

is a good example that shows that the environment extension has no influence on “normal” XML

handling). Finally an XML answer to be sent to the user is built and returned to the caller (the

ThreadedQueryHandler object). Figure 4.10 shows a simplification of request processing.

4.7.3 Sessions

As already stated, users can upload encryption and decryption keys to the server and/or (as will be

discussed later) define name-space bindings in order to access data. Requiring to perform these tasks

for every query issued is nonsense, as it wastes bandwidth and slows operations. For this reason the

concept of session has been introduced: a session is an object that is created by the server to acquire

CHAPTER 4. IMPLEMENTATION 75

and maintain user data across multiple requests. A sessions is created when a query is received and

exists as long as the user does not request its termination or the session itself becomes “too old”

and gets purged automatically. On the server side, each session is identified by an unique identifier

composed of the client’s host address (IP), the client login name and a random character string

label (generated automatically by the server); on the client side each session is characterized by the

same random string label only (as the host address and login name are of not much interest for the

client itself). As soon as the first query gets answered, the client application will get, along with the

reply, the ID assigned to the newly created session. In order to benefit from persistent key storage

and permanent (session wide) name-space bindings, the client has to provide the same session ID

in every successive request, as well as marking the session as “persistent” (by mean of a special

attribute): persistent sessions get not deleted after the query has completed.

Each session has some associated objects which are not shared with other sessions: a Keyring

object, an EnvironmentManager object (which is responsible of creation and management of envi-

ronments) and a list of current namespace bindings (which are essential to perform XPath queries).

This means that uploaded keys as well as created environments are isolated from other sessions and

are no way accessible by others.

Namespaces

Because of the fact that the framework uses an XPath engine conform to the XPath 1.0 specification,

it is required that every traversed namespace during a search to be declared beforehand. If names-

paces contained in the XML data are not correctly declared, it may be possible that some result

from an XPath search will be missing. For example, suppose to have the following XML document,

consisting in only one element:

<example xmlns="http://www.unifr.ch/#examplens"/>

To reference this node using XPath (used by both XPath queries and XUpdate selections) it

is not sufficient to select the node example. Instead, it is required that the namespace declared

within this element to be explicitly registered inside the current session, by giving it a bogus prefix.

Supposing that the namespace URI http://www.unifr.ch/#examplens has been registered and

associated with prefix default, to access the previous node the following syntax should be used:

\slashdefault:example

This limitation is not a bug nor an error of the application but is defined within the XPath

1.0 semantic, which this framework implements. The same way, to access a node using a prefixed

namespace, requires the latter to be registered explicitly. For example, to reference a node defined

as:

<other xmlns:world="http://www.unifr.ch/#worldns"/>

CHAPTER 4. IMPLEMENTATION 76

Figure 4.10: Request parsing and execution

CHAPTER 4. IMPLEMENTATION 77

the following syntax should be used:

/world:other

Omitting to register a namespace and/or to declare the namespace inside the XPath query will

result in no element found and generally in wrong results for both XPath and XQuery commands.

The XPath 2.0 [39] specification (which is currently only a draft, under active work by the W3C

committee) should be more namespace’s aware, and allow querying without need to define every

namespace.

4.7.4 Concurrency

Being a client/server architecture, it is clear that some concurrency problems could arise when two

or more clients try to access the data structure at the same time [13].

Pessimistic concurrency control can be successfully exploited by mean of exclusive locks; in con-

trast, use of shared locks is difficult and provide very little performance improvement. In an XML

database data is not organized in closed and seamlessly independent entities such as tables, as it

happens in traditional relational databases; therefore, assuring the ACID properties common to

a transactional model while still allowing a high concurrency degree is not evident. The intrin-

sic hierarchical data organization and multi-dimensional nature of tree structures such as DOM,

makes shared locking mostly ineffective, because a locking of every traversed node is required. Also,

granularity of the locking mechanism must be lowered down to the node level; in contrast, common

transactional databases can ensure mutual exclusion by locking whole tables, as tuple objects cannot

extend over their two-dimensional structure.

An optimistic approach is better suited to address the concurrency problem regarding access to

a DOM tree. Shadow tree fragments can be used during transaction execution and changes can be

applied to the database only after a successful validation against concurrent modifications. By the

way, this approach is trickier to implement, and requires deep changes in the DOM implementation

in order to speed up the write process.

Therefore, data locking in the current implementation is achieved using exclusive locks [46]

on the data structure: this pessimistic approach, although not the best solution for performance,

gives acceptable results also under heavy load, and, as we will see, provides a good concurrency

management solution also in our environment based data structure. Please note that actually there

is also no concept of transaction, which means that if request’s execution is at some point interrupted,

data corruption could happen.

There exist only one global lock, implemented as a java.util.concurrent.Semaphore, declared

in SessionManager.java:

public final Semaphore domAccess;

CHAPTER 4. IMPLEMENTATION 78

that is used to control access to the JDOM tree; this lock can be acquired by tree kind of

objects: Session objects, the Environment updater thread and the DataSynchronizer thread.

Session objects can acquire the exclusive lock on the main resource by mean of an associated query

handler, which, when requested by the current query, tries to acquire the lock or block until it’s

available (causing the caller thread, a ThreadedQueryHandler object, to sleep). This lock is acquired

before executing every request and before making changes to the key chain; in the latter case,

locking is needed because of the lazy update of encrypted environments introduced for performance

optimization (refer to next section). As soon as the request as been fullfilled, the lock is released

and can be acquired by another thread. After each request all open and modified environments need

to be updated so that encrypted data reflects changes; environment objects will also get discarded

if the next session accessing the data tree is different from the last one.

Figure 4.11 shows a possible situation. Client A and Client B send their queries to the server; note

that these two queries could also have been issued at the same time, but, because of the exclusive lock

request are executed sequentially. At point 5, before the query handler manages Client B request,

all environments instanced by Client A must be updated and closed, so that data on the server is

consistent.

4.8 Performance optimization

A number of performance tricks have been added to minimize the delay caused by data encryption.

Most of these enhancements have been already introduced in the previous sections, as, for example

the lazy updating of encrypted environments. In this section these optimization will be discussed in

detail.

4.8.1 Environment updater thread

Updating an environment after every modification of data is both time consuming and useless

because it can be supposed that the next request has good chances of being issued by the same

client, meaning that the same data could probably get modified another time, thus requiring another

decryption and re-encryption procedure. Knowing that long delays due to data encryption are not

well accepted by users and that there are surely many “death slots” of time between requests, it

has been decided to introduce and implement a lazy updating concept. By lazy updating we mean

that environment updating (that is re-generation of an encrypted data structure) is not performed

immediately after data modification (namely as soon as the query terminates), but sometimes in

the future, when the system has nothing better to do. Environment updating is done by a thread,

called EnvironmentUpdater, that is implemented in file EnvironmentUpdater.java inside package

Environments . Only one updater object is instanced by the server application, and lives up to the

termination of the whole program; if there are no environments to update the thread is simply put

CHAPTER 4. IMPLEMENTATION 79

asleep, and it is then waken up as soon as the next query has been processed.

This thread alone does not help optimizing the encryption and decryption delays, because if the

environment updater really starts doing its work after every request, the mean delay would not be

minimized at all. What it is done instead, is to use the lock on the data tree as a method to decide

if the thread can proceed or not; when the thread is waken up, it will first get a list of all open

environments (from the last session) on what it is supposed to “work” on; for every environment

to update, it then tries to access the data tree (by trying to acquire the corresponding lock): if the

acquisition succeeds, environment update takes place; if not the thread clears its environment list

and puts itself asleep.

In a real situation, as the updater tries to acquire the lock, it can happen that the latter is

already owned by another session/query handler; in that case, there is no need that the updater

thread continues its work (because environments could have been forced to close or just left open,

depending on the session that required the lock).

To optimize further the benefits provided by lazy updating, a time delay between end of request

and awakening of this thread has been introduced: this way a time slot for incoming connections is

left open. This delay can be changed by modifying the corresponding value in the configuration file

(refer to section on configuration management).

Lazy updating also introduces some problematic situations, for example when an encryption key

is to be removed from the server. If the user has modified some data in an encrypted part of the

XML document bound to this key, it is important that data is immediately ciphered, before the key

is removed. For this reason, a lock on the DOM tree is also acquired when removing a key from the

session’s keyring.

4.8.2 Data synchronizer thread

Saving data to disk after every modification is another source of delays, which becomes noticeable

when XML data becomes large. Flushing changes to disk after every modification is not very efficient,

because also for alteration of just some bytes (it’s better use the term characters, as the system is

dealing with text XML data), the whole data structure would have been written on disk.

For this reason, the job of saving data on disk is performed by another thread, called DataSyn-

chronizer (implemented in DataSynchronizer.java, in package environments) that saves period-

ically data on disk; also this threads has to wait that the lock on the DOM tree is available before

accessing it.

The delay that determines when data should be saved to disk is set by mean of a global prop-

erty (that can be changed by modifying the configuration file) named SyncTime, which defaults to

10000ms, or 10 seconds.

CHAPTER 4. IMPLEMENTATION 80

Figure 4.11: Concurrent access solved by exclusive lock

Figure 4.12: Lazy environment updating

CHAPTER 4. IMPLEMENTATION 81

4.9 Communication interface and protocol

Clients can communicate with the server over TCP, by connecting to a specified port (by default this

port is 8351, but this value can be modified by mean of a key in the configuration file). Commands

are issued by sending XML requests through this connection and then wait for server answer. Con-

nections to the server are not persistent (sessions, as explained before, are), so the client application

has to create a new connection for every series of requests. An advantage of not having persistent

connections is that the server does not have to mantain data structures allocated, a disadvantage is

that there is some little overhead involved in setting up the connection; this choice also comes from

the fact that clients can issue multiple requests within a single query, and these requests are not

processed in realtime, so a continous server-client interaction is not really necessary.

Using a standard TCP interface, means that clients can be implemented in whatever language

supports TCP sockets (Java, C/C++, Python, Perl,...), because no special library is needed to make

a custom application interact with the server.

4.9.1 Client to server protocol

As said before, queries are written in XML, which is simply sent over a TCP connection to the

server; the syntax of RoXanne queries sent to the server must follow the syntax shown in Note 4.9.1.

If syntax errors are detected in the query, the client application is not assured to receive an answer

from the server (so the connection will simply timeout); a common source of errors is forgetting

to send the required XML header (<?xml version="1.0" encoding="UTF-8"?>) before the query

itself. The protocol syntax is described by mean of the DTD language.

Note 4.9.1 roXanne Query syntax

<!ELEMENT roxannequery (keychain?, requests?)>

<!ATTLIST roxannequery login CDATA #REQUIRED

password CDATA #REQUIRED

control CDATA #IMPLIED

sessionId CDATA #IMPLIED

version CDATA #FIXED "1.0"

persistent (true | false) #IMPLIED>

<!ELEMENT keychain (addkey | removekey)*>

<!ELEMENT requests action*>

<!ATTLIST action type (xpath | xupdate | encrypt | genkey | decrypt | hash | status |

nodeinfo | nsbind | nsunbind | nsunbindall) #REQUIRED

encoded (true | false) #REQUIRED

method CDATA #IMPLIED

CHAPTER 4. IMPLEMENTATION 82

keyID CDATA #IMPLIED

prefix CDATA #IMPLIED

uri CDATA #IMPLIED

depth CDATA #IMPLIED

password CDATA #IMPLIED>

<!ELEMENT addkey (encryption* , decryption*)>

<!ELEMENT removekey (EMPTY)>

<!ATTLIST addkey id CDATA #REQUIRED

method CDATA #REQUIRED>

<!ATTLIST removekey id CDATA #REQUIRED

method CDATA #REQUIRED

flag (encryption | decryption | both) #REQUIRED>

<!ELEMENT encryption (#PCDATA) #REQUIRED>

<!ELEMENT decryption (#PCDATA) #REQUIRED>

Login control

Access control is managed using login names and passwords; new users can be added by modifying the

server configuration file. Login name and password must be specified with the login and password

attributes of the roxannequery element. If invalid login data is sent, the server will return nothing.

Login names and password are case-sensitive, and are sent in plain format with every query. Please

refer to section 4.10 for a description of how to add new users by modifying the configuration file.

Example 4.9.1 Setting login information

<roxannequery login="foo" password="bar"/>

Server control

The control attribute can be used by administrators to execute some special commands: setting

this attribute to shutdown will cause the server to shutdown after a certain amount of time (the

exact time is set by the ShutdownWaitTime configuration key), where using the value reloadconfig

will force the server to reload its config. As execution of these special commands is reserved to users

with administrator role, their use by a “normal” user have no effect.

Example 4.9.2 Shutting down the server or forcing reloading

<roxannequery login="foo" password="bar" control="shutdown"/>

<roxannequery login="foo" password="bar" control="reloadconfig"/>

CHAPTER 4. IMPLEMENTATION 83

Session ID

The sessionId attribute can be used to supply a valid session identifier to the server in order to

login to an existing session. If an invalid session identifier is provided, the server will generate a

new session with a new sessionId. As sessions are automatically removed from server after a certain

amount of time, if you’re getting errors about unbound namespaces or invalid keys, always check

that you’re currently using the right session.

Example 4.9.3 Setting a session identifier

<roxannequery login="foo" password="bar" sessionId="gjfsgbvjsfsgg"/>

Session persistency

By setting the persistent attribute either true or false it is possible to define if the current (or

new) session should not be deleted after the end of the query (persistent set to true) or not. This

attribute can also be used to force the end of a session by sending to the server an empty query

(roxannequery element only) with no persistent attribute set (which then defaults to false).

Example 4.9.4 Setting session persistency

A persistent session:

<roxannequery login="foo" password="bar" persistent="true"/>

A non-persistent session:

<roxannequery login="foo" password="bar"/>

4.9.2 Keychain operations

Within the keychain element it is possible to request modifications to the session’s keychain, mean-

ing that the user can add or remove keys. To add a new key (that should have been generated by

roXanne Framework using the genkey command), an addkey element is used whereas to remove an

existing key a removekey element is to be used.

Adding keys

To upload a new key into the session (so that it can be used by the server), append an addkey

element to the keychain element. The addkey node accepts an id attribute which is used to give a

name to the key (this name will be used to reference the key) and a method attribute, which specifies

the encryption algorithm this key refers to. The corresponding encryption key data is to be added

as text inside an encryption element, wheras the decryption key data has to be added as text inside

CHAPTER 4. IMPLEMENTATION 84

a decryption element; the server will only accept keys generated by this framework, and does not

require that encryption and decryption keys are added at the same time. If keys with the same id

already exists in the current session they are simply replaced by the new provided keys; keys having

the same identifier but referring to different methods are considered as not equal and therefore can

co-exist. If a read-only environment exist on the server and the corresponding encryption key gets

loaded, the read-only property will be removed.

Removing keys

To remove a key from the current session a removekey element to keychain has to be appended. This

element should have the following attributes: the id of the key to be removed, and a flag attribute

specifying if only the encryption key or the decryption key or both keys should be removed.

If there are open environments that depend on the removed key they will be either closed (if the

decryption key gets unloaded) or set read-only (if the encryption key is removed).

Example 4.9.5 Adding and removing keys

<roxannequery

login="foo" password="bar" sessionId="fjsdfjfdsj" persistent="true">

<keychain>

<addkey id="mypersonalkey" method="DESede">

<encryption>...</encryption>

<decryption>...</decryption>

</addkey>

<removekey id="anotherkey" method="AES_128" flag="both"/>

</keychain>

</roxannequery>

4.9.3 Performing actions

Within the request element it is possible to define an unlimited number of action children. It is up

to the user to only send a reasonable number of requests per query. Actions are executed sequentially

on the server, and for every action a result is returned (see next sub-paragraph); if an action causes

a fatal error if may be possible that subsequent actions are not valid anymore and also cause errors

upon execution.

XPath search

To execute an XPath search, an action element with the type attribute set to action must be used.

The XPath location is to be specified as the content of the node; it is also possible to set a maximum

CHAPTER 4. IMPLEMENTATION 85

depth attribute: by setting a depth of 0, if an Element node is to be returned as result from the

query, it will be returned alone (without any children attached), with a depth of 1 the node and

its children will be returned, and so on. The depth attribute is useful if the user want to limit

the length of result data, for example in case where the complete structure resulting from elements

would be too large. Setting the depth to -1 means infinite depth. The XPath action also accepts a

boolean value encoded attribute, which is used (if set to true) to specify that the XPath location

is encoded in Base64 format. Example 4.9.6 shows a sample XPath search.

Example 4.9.6 Sample XPath search

<action type="xpath" depth="0">/documents/pictures/picture[3]/@id</action>

XUpdate modification

An XUpdate modification is used to alter data on the database, and can be requested by setting the

type attribute of an action element to xupdate. There are some conditions that need to be satisfied

in order for an XUpdate request to be successfully executed:

- The target node (determined by the select attribute) need to point to a valid node inside the

tree.

- The target node must not be contained inside a read-only environment.

- The target node cannot be the root node of the database.

XUpdate modifications require that the XUpdate namespace and version are specified within the

action element. This means that a query will look like:

Example 4.9.7 XUpdate query

<action type="xupdate" version="1.0"

xmlns:xupdate="http://www.xmldb.org/xupdate">

<!-- XUpdate modification here -->

</action>

Node encryption

To encrypt a node, a type attribute set to encrypt must be used; the key to be used must be already

loaded on the server, and the node to be encrypted is to be selected by mean of an XPath location.

For security purposes it is only possible to encrypt a single element at time: if the XPath location

points to more than one node, encryption fails. The root node of the XML document cannot be

encrypted because current implementation requires that the entry point of the DOM tree to be in

CHAPTER 4. IMPLEMENTATION 86

plain XML. The key to be used is selected by mean of the keyId attribute, and the cipher by mean

of the method attribute (available ciphers are DESede, AES 128 and RSA V1 5).

Example 4.9.8 Encryption of a node

<action type="encrypt" keyId="mykey" method="RSA_V1_5">/path/to/node</action>

Node decryption

To decrypt a node, only its XPath is necessary. As for encryption, it is only possible to decrypt

a single element at time, and required decryption keys must be loaded on the server: if these

requirements are not met or if the specified node is not encrypted, a warning message will be

returned.

Example 4.9.9 Decryption of a node

<action type="decrypt">/path/to/encrypted/node</action>

Key generation

To generate a new key, an action of type genkey is used. The cipher is selected by mean of a method

attribute. Additional parameters, such as a password, required by some methods (DESede and

AES 128 at this time) are set by mean of a corresponding attribute of the action element. No key

identifier is necessary, because it is only related to keys being uploaded to the server.

Example 4.9.10 Key generation examples

<action type="genkey" method="DESede" password="mypasswordaslongaspossible"/>

<action type="genkey" method="AES_128" password="anotherlongpassword"/>

<action type="genkey" method="RSA_V1_5"/>

For the RSA cipher, the key parameters are automatically random generated by the server.

Node hashing

Using the hash action, it is possible to ask the server for a hash of a selected node. If descendant

of the specified node include EncryptedData elements, the ciphered data is updated before hash

calculation, and the hash value is computed on the encrypted content. The hash function is specified

by mean of the method attribute; currently, available hash functions are:

CHAPTER 4. IMPLEMENTATION 87

- MD2: The MD2 message digest algorithm as defined in RFC 1319.

- MD5: The MD5 message digest algorithm as defined in RFC 1321.

- SHA-1: The Secure Hash Algorithm, as defined in Secure Hash Standard

- SHA-256, SHA-384, and SHA-512

The target is specified by setting the corresponding XPath expression as text content of the action

node. If the XPath location resolves to none or multiple elements the request fails with an error

message (see next section for more information about result messages from the server).

Example 4.9.11 Hash action

<action type="hash" method="MD5">/path/to/target/node</action>

Session status

With the status action, the client can retrieve information about the current session. These infor-

mation concerns available keys and bound namespaces.

Example 4.9.12 Requesting session status

<action type="status"/>

Node information

With the nodeinfo action, various information about a specified node is returned to the user. This

action only works if the specified XPath (to be set as text content of the action element) points to

a single node.

Example 4.9.13 Node information

<action type="nodeinfo">/path/to/a/node</action>

Namespace binding

As already mentioned, if the XML document makes use of namespace declarations, it is necessary to

bind them into the session in order to access data correctly. Namespace bindings remain available

until the session ends or namespaces are unbound by hand. To bind a namespace the action with

type set to nsbind is to be used; additional required attributes are a prefix value for the namespace

to be bound and a relative uri attribute.

Example 4.9.14 Binding example

<action type="nsbind" prefix="sun" uri="http://www.sunblade.com/#ns2005"/>

CHAPTER 4. IMPLEMENTATION 88

Namespace unbinding

To unbind a bound namespace, the nsunbind action is used. Only the prefix of the namespace to

be unbound is to be specified by mean of the prefix attribute.

Example 4.9.15 Unbind example

<action type="nsunbind" prefix="sun"/>

Complete namespace unbinding

If unbinding of all bound namespaces is required, the unbindall action shortcut can be used (instead

of unbinding namespaces one by one).

4.9.4 Server to client protocol

For every request submitted to the server, a corresponding reply is sent to the client. This reply

contains either the information the user asked for or the return status of a requested action, and is

also coded as an XML document. Complete XML answers are only sent if a valid XML query was

sent to the server: if non XML or invalid login data is sent, no answer is granted. Note 4.9.2 shows

the DTD of replies sent to clients.

Note 4.9.2 Server reply syntax

<!ELEMENT roxannequeryresult (keychain?, requests?)>

<!ATTLIST roxannequeryresult sessionId CDATA #IMPLIED

persistent (true | false) #IMPLIED>

<!ELEMENT keychain (addkey | removekey)*>

<!ELEMENT requests action*>

Child elements action as well as addkey and removekey, are returned in the same order as they

were issued in the query sent to the server. The exact syntax of action children is determined by

the type of the action requested, and will be described in the next sub-sections.

4.9.5 Replies to keychain operations

If keychain operations where requested in the client’s query, a keychain child will be added to the

roxannequeryresult element. Children of this node will refer to key addition or removal, in the

same order as they were requested.

CHAPTER 4. IMPLEMENTATION 89

Key addition reply

An addkey request can be either successful or not. Failure can happen if invalid key data is sent (for

example key data related to a wrong algorithm), if a non valid cipher was specified or if an invalid

key identifier was chosen.

Note 4.9.3 Key addition reply syntax

<!ELEMENT addkey (EMPTY) #REQUIRED>

<!ATTLIST addkey id CDATA #REQUIRED>

<!ATTLIST addkey method CDATA #IMPLIED>

<!ATTLIST addkey encryption (added | failed) #IMPLIED>

<!ATTLIST addkey decryption (added | failed) #IMPLIED>

The id attribute value will be equal to the one sent in the addkey request. If a null or invalid string

identifier was used the corresponding reply will only contain the id attribute set to "!invalid!".

Depending of the key type that was sent to the server for addition, the addkey element will also

define an encryption and/or decryption attribute, whose value is either set to added (if the key

was successfully uploaed) or failed (if there was an error).

Key removal reply

The reply for a key removal operation is similar to the one described for key addition. Failure can

happen if an invalid key identifier was chosen, in this case the reply will only contain the id attribute

set to "!invalid!".

Note 4.9.4 Key removal reply syntax

<!ELEMENT removekey (EMPTY) #REQUIRED>

<!ATTLIST removekey id CDATA #REQUIRED>

<!ATTLIST removekey method CDATA #IMPLIED>

<!ATTLIST removekey encryption (removed | failed) #IMPLIED>

<!ATTLIST removekey decryption (removed | failed) #IMPLIED>

The method attribute value will be the same as in the request. The encryption and decryption

attributes will be set to removed or failed according to the result of the operation.

Performing actions with a key uploaded in the same query, can lead to problems: it is suggested

that keys are uploaded separately from requests, so that it is always possible to check the result of

each operation.

CHAPTER 4. IMPLEMENTATION 90

4.9.6 Replies to actions requests

For each requested action, a corresponding action child will be added to the requests element of

the answer document. The base format of this element is listed in Note 4.9.5: the type attribute will

correspond to the requested action type. If no actions where requested, there will be no requests

element in the reply. If an action fails, a standard reply element, whose DTD is shown later in this

document, will be added; if the action succeeds, descendants of this action element will depend on

the action type.

Note 4.9.5 Action reply base DTD

<!ELEMENT action #REQUIRED>

<!ATTLIST action type CDATA #REQUIRED>

Beside the xpath, status, genkey and nodeinfo requests, which will be described separately,

other requests will return a very simple action element to inform on the status of the requested

command. The reply format is defined in note 4.9.6.

Note 4.9.6 Action reply, extended DTD

<!ELEMENT action result #REQUIRED>

<!ATTLIST action type CDATA #REQUIRED>

<!ELEMENT result (description, detail) #REQUIRED>

<!ATTLIST result exitCode CDATA #REQUIRED>

<!ELEMENT description (#PCDATA) #REQUIRED>

<!ELEMENT detail (#PCDATA) #REQUIRED>

The exitCode value can be either set to 200 if the request was fulfilled or another value if the

request resulted in an error. The description and detail child will contain a description useful to

determine the error that occurred. The possible exit codes and descriptions and details are listed in

Appendix B.

XPath search result

An XPath expression will typically resolve to a list of nodes of various types, for this reason additional

information must be returned for each kind of result: element nodes, attribute nodes, text nodes,

etc. For each node retrieved by the XPath search, a result element is added inside the action

node; this result node not only contains the actual result value but also some additional information,

such as encryption references.

CHAPTER 4. IMPLEMENTATION 91

Note 4.9.7 XPath reply syntax

<!ELEMENT action (result*) #REQUIRED>

<!ATTLIST action type CDATA #FIXED "xpath">

<!ATTLIST action depth CDATA #REQUIRED>

<!ATTLIST action context CDATA #REQUIRED>

<!ATTLIST action selector CDATA #REQUIRED>

<!ELEMENT result #REQUIRED>

<!ATTLIST result type (Attribute | Element | Text | Namespace) #REQUIRED>

<!ATTLIST result isInEncrypted (true | false) #REQUIRED>

<!ATTLIST result isSelfEncrypted (true | false) #IMPLIED>

<!ATTLIST result keyId CDATA #IMPLIED>

<!ATTLIST result method CDATA #IMPLIED>

<!ATTLIST result readonly (true | false) #IMPLIED>

<!ATTLIST result hasText (true | false) #IMPLIED>

<!ATTLIST result selector CDATA #REQUIRED>

<!ATTLIST result prefix CDATA #IMPLIED>

<!ATTLIST result uri CDATA #IMPLIED>

The action element will contain some additional information about the expression that has been

evaluated: the maximum depth (equal to the one requested by the client), the context path and

the selector. Values of the context and selector attributes, if combined, result in the given XPath

expression. For example:

/some/nodes/@*

will retrieve all attributes of the nodes child of node some. In this case the context attribute will

be set to /some/nodes and the selector to @*. Regarding each result node, whose type is defined

by the type attribute (either to Attribute, Element, Text or Namespace), some of the described

attributes (in Note 4.9.7) only refer to a certain type of result:

- Each type of result element define the isInEncrypted attribute to inform if the node is inside

an encrypted part of the document. The value is a string representing a boolean value either

"true" or "false".

- Element results also define the isSelfEncrypted attribute to inform if the node is itself

encrypted (namely if the node is the root of an encrypted environment).

- If an Element is encrypted, the keyId and method attributes are set correspondingly.

- If a node is inside an encrypted environment, the readonly attribute is set to either true or

false depending on the its writability status.

CHAPTER 4. IMPLEMENTATION 92

- If an Element has at least a Text child, the hasText attribute will be set to "true".

- The selector attribute will define a relative XPath of the result from the current context.

- The prefix and uri attributes refers to Namespace results.

Node information reply

Information about a node is very similar to an XPath result for a single element. The only difference

is that no node content is returned, and that every information is added directly inside the action

node.

Note 4.9.8 XPath reply syntax

<!ELEMENT action (result*) #REQUIRED>

<!ATTLIST action type CDATA #FIXED "nodeinfo">

<!ATTLIST action location CDATA #REQUIRED>

<!ATTLIST action type (Attribute | Element | Text | Namespace) #REQUIRED>

<!ATTLIST action isInEncrypted (true | false) #REQUIRED>

<!ATTLIST action isSelfEncrypted (true | false) #IMPLIED>

<!ATTLIST action keyId CDATA #IMPLIED>

<!ATTLIST action method CDATA #IMPLIED>

<!ATTLIST action readonly (true | false) #IMPLIED>

<!ATTLIST action hasText (true | false) #IMPLIED>

<!ATTLIST action prefix CDATA #IMPLIED>

<!ATTLIST action uri CDATA #IMPLIED>

The node location provided to the nodeinfo action request is replied as value of the location

attribute. Other attributes meaning reflect what has been said for XPath queryies results.

Status reply

A status request returns interesting information about the current session, such as loaded keys and

bound namespaces. The DTD associated to replies to status requests is shown in Note 4.9.9.

Note 4.9.9 Status reply syntax

<!ELEMENT action (keychain,nsbindings) #REQUIRED>

<!ATTLIST action type CDATA #FIXED "status">

<!ELEMENT keychain (key*) #REQUIRED>

<!ELEMENT nsbindings (nsbind*) #REQUIRED>

<!ELEMENT key (EMPTY)>

CHAPTER 4. IMPLEMENTATION 93

<!ELEMENT nsbind (EMPTY)>

<!ATTLIST key id CDATA #REQUIRED>

<!ATTLIST key method CDATA #REQUIRED>

<!ATTLIST key hasEncryption (true | false) #REQUIRED>

<!ATTLIST key hasDecryption (true | false) #REQUIRED>

<!ATTLIST nsbind prefix CDATA #REQUIRED>

<!ATTLIST nsbind uri CDATA #REQUIRED>

For every key loaded on the server, the keychain element will contain a key child that specifies

the key identifier as the id attribute, a method attribute that will refer to the cipher name and two

boolean attributes (hasEncryption and hasDecryption) to inform about which keys are available.

For namespace bindings a nsbind child is added to the nsbindings element, and contain a prefix

and uri reference.

Key generation reply

Reply to key generation requests will depend on the type of key, namely generated for a symmetric

or asymmetric algorithm. The basic format for the associated action child is shown in Note 4.9.10.

Note 4.9.10 Key generation action reply syntax

<!ELEMENT action (key?,encryption?,decryption?) #REQUIRED>

<!ATTLIST action type CDATA #FIXED "genkey">

<!ATTLIST action method CDATA #REQUIRED>

The method attribute will correspond to the name of the cipher the key was generated for.

Children nodes attached to this element will depend on the kind of key; for symmetric keys, a single

key child will be created, whereas for asymmetric keys both an encryption and a decryption child

will be used to return the public and the private key.

Note 4.9.11 Symmetric and asymmetric key results syntax

<!ELEMENT key (#PCDATA) #REQUIRED>

<!ELEMENT encryption (#PCDATA) #REQUIRED>

<!ELEMENT decryption (#PCDATA) #REQUIRED>

Data of the corresponding keys (whose format was described before in this document) will be set

as content of either key, encryption or decryption nodes.

CHAPTER 4. IMPLEMENTATION 94

4.10 Configuration management

Certain aspects of the server application are customizable by the user, and are stored in an XML

configuration file on disk. This file follows the XML syntax for Java Properties [47] objects; the

associated DTD is shown in 4.10.1.

Note 4.10.1 java.util.Properties DTD

<!ELEMENT properties (comment?, entry*)>

<!ATTLIST properties version CDATA #FIXED "1.0">

<!ELEMENT comment (#PCDATA)>

<!ELEMENT entry (#PCDATA)>

<!ATTLIST entry key CDATA #REQUIRED>

By default, this configuration is read from file roxanne.conf in the current path; to override

this setting the configfile command line switch should be used. The format of this configuration

file is pairs of key and value strings, as shown in Example 4.10.1.

Example 4.10.1 A configuration entry

<entry key="ServerRequestTimeout">1500</entry>

The keys can be either String or Numerical values, and their type is automatically determined

by the application. The configuration is loaded inside a single ConfigurationRegistry object (see

ConfigurationRegistry.java in package application), where various methods for getting and

setting configuration values are implemented, as shown in note 4.10.2.

Note 4.10.2 Some configuration registry methods

public boolean getBooleanValue(String key, boolean defvalue)

public double getDoubleValue(String key, double defvalue)

public int getIntValue(String key, int defvalue)

public long getLongValue(String key, long defvalue)

Each method requires a default value to be used when no key with the given name is defined inside

the configuration. This default value is not saved to disk. Table 4.1 list the available configuration

keys and their default value.

CHAPTER 4. IMPLEMENTATION 95

Key Type Default Description
XMLdbfile String root.xml File to be used as root document for the database
defaultRootNodeName String roxannedb The default name of the root node, if no root

document is specified
ServerRequestTimeout Int 1500 Timeout delay for connections (in ms)
SyncTime Int 10000 Sync on disk delay (in ms)
UpdaterDelay Int 500 Delay between end of request and updater start
ServerPort Int 8351 Server port for incoming connections
ServerMaxThreads Int 3 Number of working threads pre-allocated.
BufferSize Int 16384000 Requests buffer size (in bytes)
ShutdownWaitTime Int 10 Seconds to wait before shutting down server
SessionMaxTime Int 1800000 Maximum time to live for a session (in ms)
login(name) String n/a Sets the password for username ’name’
role(name) String n/a Sets the role of user ’name’, ex. administrator

Table 4.1: Configuration keys and default values

Chapter 5

User manual

5.1 Chapter overview

This chapter explains how to execute and use both the server and client applications. Beside the

client graphical interface provided with the framework (x.click) a simple adapter library written in

Python is also presented.

5.2 Server application

The server application is text based and can be run independently from the graphical user interface.

To allow incoming connections, the server opens by defaul the TCP port 8351: this port number can

be changed by modifying the configuration file. If the x.core component is executed on a separated

host than the client, it is important that the firewall settings on the server machine allow incoming

connections on the cited port.

Launching the server application

To execute the server application, the following conditions are needed:

- a Java 1.5 runtime that must be available and correctly configured (meaning that the Java

VM can be executed by mean of the java command)

- some JAR and native libraries have to be found in the current class path

On an Unix like operating system (such as Linux or FreeBSD) access a shell (either in text mode

or by launching a terminal application from inside an X Session), then move to the directory where

the x.core application is located:

cd /path/to/xcore

96

CHAPTER 5. USER MANUAL 97

A startup shell script that will set the correct class path and library path is already provided, so to

launch the application simply invoke it:

./xcore.sh

To launch the application from another path in the filesystem, use a script to ensure that the path is

first changed to the right directory, or execution will fail. The server component also accepts some

command line arguments, which are:

./xcore.sh [--help]

[--debug <debuglevel>]

[--configfile <configfile>]

[--xmlfile <xmlconfiguration>]

The --debug or -d command line option allow the user to select the debug threshold for messages

shown by the server: a lower value means textttose output; default value is 1. The --configfile

or -c option allows to set the configuration file to read from. The --xmlfile or -x option allows

to set the base XML file used as root document in the database. The --help switch will show the

above help message.

Increasing JVM memory

Since all data is managed in memory, it may be possible that the server application runs out

of memory during execution. To avoid that it is encouraged to add the following command line

parameters to the Java executable [41].

-XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8 -Xms512m -Xmx512m

This will increase the available memory inside the virtual machine to 512 MBytes. Please refer to

the Java documentation (for example [43]) for additional help.

Security concerns

As the server currently does not provide a way to use a secure connection, to ensure confidentiality

of data transmission one of the following schemes must be used. Either the server application and

the client reside on the same host or an SSH tunnel between the client and server machine must be

used.

Managing multiple documents

To manage multiple XML documents it is necessary to run different instances of the x.core compo-

nent. Ensure that separate copies of each required file are available at different locations for each

instance runned, as the XML file used to store the database is always written on the same file in

the current path (named root.xml).

CHAPTER 5. USER MANUAL 98

5.3 Client application

As a proof-of-concept, beside the server application, a client called x.click was developed. Accessing

the server is, as we have seen, extremely easy provided that the programming language or the client

application have support for TCP sockets. Several design have been considered, and what has

been developed is a working application that can be used to perform almost every possible task

offered by the server application. This client application has been also developed with the Java

programming language; for the graphical interface the SWT/JFace [40] library has been chosen,

because it provides consistent look-and-feel on every major platform (Linux/GTK, Windows and

MacOS/X).

Launching the client application

To execute the client application, the following conditions are to be met:

- a Java 1.5 runtime must be available and correctly configured (meaning that the Java VM can

be executed by mean of the java command)

- some JAR and native libraries have to be found in the current class path

- a running roXanne Framework server (x.core) must be running locally on a remote computer

so that the client can connect to it

On an Unix like operating system (such as Linux), execution of the client application can be done

from a terminal from inside an X Session: the user is required to move to the directory where the

x.click application is located:

cd /path/to/xclick

A startup shell script that will set the correct class path and library path is already provided, so to

launch the application it is necessary to simply invoke it:

./xclick.sh

To launch the application from another path in the filesystem, it is suggested to use a script to

ensure that the path is first changed to the right directory, or execution will fail.

5.3.1 The main window

The client application is designed to operate like a terminal emulator, presenting the user a prompt

where some commands can be inserted. Figure 5.1 shows how the main window appears as the

program is started.

CHAPTER 5. USER MANUAL 99

Figure 5.1: x.click main window

CHAPTER 5. USER MANUAL 100

On the top of the window there is a menu bar to access all functions available:

- File menu:

- Setup new session (shortcut Ctrl+Shift+N): this command is used to configure a new

session, by setting some parameters needed to connect to the server.

- Connect (shortcut Ctrl+Shift+C): as a session has been configured, this option will be

enabled, and is used to connect to the selected server.

- Logout (shortcut Ctrl+Shift+L): to properly terminate a session, this option should be

used. Note that log out is only available after the user has connected to the server.

- Session menu:

- Manage keys : this will show the key management dialog. This option is only available

as the application is connected to the server.

- Manage namespaces : this option will open the namespace management dialog. This

option is only available if connected.

- Data menu:

- Perform XPath search (Ctrl+F): used to enter XPath expressions.

- Execute XUpdate query (Ctrl+U): launches a wizard to execute XUpdate modifica-

tions.

- Encrypt a node (Ctrl+E): used to encrypt a node.

- Decrypt a node (Ctrl+D): used to decrypt an encrypted node.

- Import submenu:

- Import from database : launch an x.mill session to import data from an external

database.

- Export submenu:

- Export data to XML : used to export data from the database to an XML file.

- Export to database : x.mill session to export data to an external database.

The toolbar

Frequently used operations have also an icon on the toolbar for faster access. As for menu options,

some items are disabled unless the client application is connected to the server.

CHAPTER 5. USER MANUAL 101

5.3.2 Creating a new session

To access data on a server it is first necessary to set up a session on the server. To do this the Setup

new session option in the File menu must be selected, or the corresponding icon on the toolbar

clicked. Then a dialog to set connection parameters (shown in Figure 5.3) will be displayed.

In the Server address text box the qualified network address or IP of the server must be

specified; in the Server port text box the port to connect to can be changed (the default value,

8351, is shown). Finally a Login name and Password must be specified (the login name must

have a corresponding login(login name) entry in the server configuration file).

If every required value has been set, the Finish button becomes clickable and allows to store

the configuration and close the dialog. It is also possible to close the configuration dialog without

changing previous entered values by simply pressing the Cancel button.

5.3.3 Connecting to server

As soon as the session parameters have been configured as described in the previous section, the

Connect option in the File menu as well as the corresponding toolbar item become available: select

one to connect to the server1.

On success, a prompt will be shown on the window; if connection fails, an error message will

appear instead, as shown in Figure 5.4.

5.3.4 Terminal emulator

The client application is built around a terminal emulator widget that is used to browse XML data

on a server by mean of XPath expressions. To improve the user experience, a number of shortcuts

have been implemented, for example auto-completion or history. The terminal emulator takes the

full application window, and, as soon as the client application is connected to the server, it will show

a command prompt, as shown in Figure 5.5.

After the $> prompt it is possible to enter an XPath expression. Pressing the enter or return key

will cause the current command line to be evaluated on the server, and a result to be shown in the

terminal emulator. When evaluating expressions the terminal becomes locked, and it is not possible

to enter commands.

Results

Results from evaluations of XPath expressions are also shown in the terminal emulator. Along with

each result, some information about the returned node are given. Each evaluation result will contain

an header, that shows the Depth of the current XPath, the Context and the Selector, for example:
1As the client and the server do not mantain a permanent connection, the result of the Connect action is to create

a valid session on the server where keys can be uploaded and namespaces can be defined.

CHAPTER 5. USER MANUAL 102

Figure 5.2: The toolbar

Figure 5.3: Session parameters dialog

Figure 5.4: Message shown on failed connection

Figure 5.5: Terminal emulator prompt

CHAPTER 5. USER MANUAL 103

XPath

Depth: 0

Context: /

Selector: *

After this header, individual results are listed; their format depend on the type of the node

returned.

Element node result The Relative XPath string will allow to refer to that Element: simply

append the Context value from the result header before it to get an univoque location. The relative

XPath location is also added to the auto-completion word list. If the element is located inside an

encrypted part of the document, the Is in encrypted property will be set to true. The element

itself is shown after these properties.

Example 5.3.1 An Element result

XPath::Result

Result type: Element

Is in encrypted: false

Is self encrypted: false

Has text: false

Relative XPath: back[32]

Readonly: false

Encrypted element node result If decryption keys are available, EncryptedData elements gets

expanded and replaced by the deciphered content. The shown key name refers to the identifier used

to encrypt the element.

Example 5.3.2 An Encrypted Element result

XPath::Result

Result type: Element

Is in encrypted: false

Is self encrypted: true

Has text: false

Relative XPath: back[32]

Readonly: false

Key: mykey

Method: RSA_V1_5

CHAPTER 5. USER MANUAL 104

Attribute node result The relative XPath for and attributes is given using the abbreviated

syntax. An attribute is set to read-only if the parent element is also read-only. The attribute value

is shown after these properties.

Example 5.3.3 An Attribute result

XPath::Result

Result type: Attribute

Is in encrypted: false

Relative XPath: @href

Readonly: false

Text node result A text node has no relative XPath as it lists all available text concatenated.

Example 5.3.4 A Text result

XPath::Result

Result type: Text

Is in encrypted: false

Readonly: false

Setting the depth

It is possible to set the depth value for XPath results by setting the global variable depth by entering

the !set command at the prompt, for example:

!set depth 5

To retrieve the current depth value (if set) the !get command is used:

!get depth

The depth variable affects results by going deeper in the XML document; this means that, for

example, setting a depth of 1 an element is returned along with its children, wheras a depth of 2

will also list children of each child. A depth of -1 means infinite recursion into children. Warning:

setting a high depth value or infinite depth can cause an high memory usage, both on

the server and the client!

CHAPTER 5. USER MANUAL 105

Auto completion

To speed-up writing XPath expressions, an auto-completion feature has been integrated in the

terminal; to use it, simply press the Tab key and the current expression will be auto-completed as

good as possible. By pressing the Tab key on a empty line, the current context will be inserted. By

pressing two times rapidily the Tab key a slash followed by an asterisk (the XPath short expression

to get all children of the current node) will be added to the current command line. The auto-

completion word list is based on the relative XPath of child nodes of the current context, meaning

that it depends on the last evaluated expression.

History

The terminal mantains an history of the last evaluated XPath expressions: to browse them simply

press the Up and Down keys at the command prompt. Warning: browsing history entries

will cause the current command line to be replaced.

5.3.5 Managing namespaces

To manage namespace bindings for the current session, the Manage namespaces entry in the

Session menu is to be selected. A dialog similar to the one shown in Figure 5.6 will be then

displayed.

It is important that all namespaces that are likely to be traversed during XPath searches are

correctly bound into the current session.

To bind a new namespace the user must click on the New binding button: a new line will be

added to the list of namespaces, and by clicking click on it, it is possible to edit both the prefix and

the URI.

To remove a binding the corresponding line in the list must be selected, then click the Remove

selected button, on the top of the window. A confirmation request will be shown: click Yes to

confirm deletion or No to cancel.

It can be useful to save the list of bound namespaces to a file, so that they can be easily re-

inserted in another session: to do this, click on the Save to file button. A file selection dialog will

appear allowing to insert the filename for the file that will hold the bindings list.

To later reload a binding list click on the Load from file button and select the previously saved

file.

Once needed modifications have been done, click on the Commit changes button to reflect

changes to the current session on the server, or click Cancel to abort them. If two or more enctries

exist with the same prefix, an error message will appear when committing changes: return to the

bindings list and resolve duplicates, then commit again.

CHAPTER 5. USER MANUAL 106

5.3.6 Key management

In order to take advantage of transparent access to encrypted XML data on the server, as well

as encrypt new plain data, keys must be loaded into the current session. First, open the key

management dialog by selecting the Manage keys entry from the Session menu, or click on the

corresponding icon on the toolbar: a new window will appear (see Figure 5.7).

It is possible to perform every key related operation from there: generate new keys, add them to

current session or remove them. The Manage Keys dialog will show the current loaded keys, their

identifier, the cipher they relate to, if they are encryption or decryption keys and the key data source

on disk. Unlike for the namespace management dialog, operations on keys are directly executed on

the server.

Generating a new key

To generate a new key, simply click on the Generate Key button. This will start a wizard that will

guide you through the key generation process.

Select the encryption method in the corresponding combo box. Depending on method (cipher

name) selected, the Password text box is enabled or not: actually the DESede and AES 128 ciphers

require a password string, whereas RSA V1 5 does not. If required enter a suitable password, then

click Next to launch key generation.

As keys have been correctly generated, the Save key (or Save encryption key and Save

decryption key for asymmetric algorithms) buttons will be enabled, click on them to save the key

data in a file on disk. If an error occurs during key generation, a message will be shown in the

Operation log box. When finished, click the Finish button to terminate the wizard.

Adding a key

To upload a key to the server, the corresponding key data file must be available on disk; click the

Add key button in the key management dialog to show the key addition wizard (see Figure 5.10).

By mean on the Method list, the cipher of the key to be uploaded must be specified: if unsure,

it is also possible to choose <Autodetect> to ask the application to auto detect the method. Next,

select the key type: for symmetric ciphers it is possible to upload at the same time both encryption

and decryption keys (which are in fact the same), by choosing Both.

A key identifier must be given to the key to be uploaded: this label is used to identify the key

both in the client application and on the server.

Finally, enter the key file path or click on the corresponding button to open a file selection

dialog to browse the filesystem and locate the required file.

CHAPTER 5. USER MANUAL 107

Figure 5.6: Namespaces management dialog

Figure 5.7: Key management dialog

CHAPTER 5. USER MANUAL 108

Figure 5.8: Key generation wizard (step 1)

Figure 5.9: Key generation wizard (step 2)

CHAPTER 5. USER MANUAL 109

Warning! Currently no check is performed to test if the decryption key works

against the encryption one and vice-versa, so problems can occur (including loose of

data during re-encryption) if two non matching encryption and decryption keys are

using the same identifier.

When finished configuring key parameters it is possible to click on the Next button to proceed

with key uploading. The log text box in the next page will show information about the process.

Figure 5.11 shows an example of the final page of the Add Key wizard.

Removing a key

To remove a key, select the corresponding entry in the key management window, then click on

Remove key; a confirmation message will be shown: click Yes to delete the key from the server, or

No to abort deletion.

5.3.7 Updating data

Modifying and updating data on the server is done by mean of an XUpdate query; to simplify the

process of inserting and executing these queryies, a wizard to assist the user has been created: to

access it, the Execute XUpdate query option from the Data menu must be selected.

An XUpdate query first requires a Modification command, that is to be selected from the

corresponding list in the first page of the wizard; available modifications are:

- xupdate:insert-before : to insert content before the specified node

- xupdate:insert-after : to insert content after the specified node

- xupdate:append : to append new content inside an element

- xupdate:remove : to remove some content

- xupdate:update : to change the value of the specified content

The target node is selected by mean of an XPath query that points to it, that is to be entered

in the Selection box. By default this box already contains the XPath expression pointing to the

current context. The actual content to be inserted or modified on the server is to be specified in the

Content box.

When finished, by pressing the Next button: the XUpdate query will be exectued, and the log

of this operation shown in the last page of the wizard.

CHAPTER 5. USER MANUAL 110

Figure 5.10: Adding a key (step 1)

Figure 5.11: Adding a key (step 2)

CHAPTER 5. USER MANUAL 111

5.3.8 Encryption

By having at least an encryption key loaded on the server, it is possible to encrypt a selected node

to protect its content. To do this, select the Encrypt a node option from the Data menu. A dialog

similar to the one shown in Figure 5.13 will appear.

By selecting the desired cipher in the Method list, the corresponding available keys will be

shown in the Key list. The Location of the node to be encrypted must point to exactly one node

(encryption of multiple nodes at the same time is disabled for security reasons): if this condition is

not met, encryption will fail. It is also not possible to encrypt the root element of the database nor

text or attributes. To continue and encrypt the selected element, press Next.

If an error occurs it will be displayed in the final page of the wizard.

5.3.9 Decryption

To decrypt an encrypted node, the required decryption keys must be already available on the server.

Then select the Decrypt a node item from the Data menu, to display a dialog similar to the one

shown in Figure 5.14.

Decryption only requires an XPath expression pointing to the encrypted node to be deciphered,

then, by pressing the Next button, operations take place. If the node is not found or if the specified

one is not encrypted, an error message will appear in the final page of this wizard.

5.3.10 Database interaction

Interaction with other databases is provided by the x.mill component, developed by Andrea Ghirlanda

as his Master Project at the University of Fribourg. x.mill allows to export data from traditional

relational databases (such as MySQL and PostgreSQL) to XML and back. Using the import and

export wizard provided by the client application, it is possible to insert data coming from an external

database inside the existing XML document on the x.core server, encrypting it if necessary, and,

as soon as needed, exporting it back to an external database.

This section will only describe the x.mill component from the user point of view: please refer to

the x.mill documentation to discover how the import and export features are implemented and how

data is converted to the XML format.

Importing data

Importing data from an external database is done by selecting the Import from database option

in the Import submenu of the Data menu. A dialog like the one in Figure 5.15 will be shown.

The required parameters to connect to the source database must be provided: server address,

port, login username and password. Currently, two databases can be chosen as source: MySQL and

PostgreSQL. By selecting a database name from the Provider list, the default port will be changed

CHAPTER 5. USER MANUAL 112

Figure 5.12: XUpdate wizard

Figure 5.13: Encryption wizard

CHAPTER 5. USER MANUAL 113

Figure 5.14: Decryption wizard

Figure 5.15: x.mill wizard (step 1)

CHAPTER 5. USER MANUAL 114

accordingly. As soon as the wizard has collected enough information, the Next button will become

enabled: click it to continue.

Using the specified parameters, the x.mill component connects to the provider and retrieves a

list of available databases (see Figure 5.16). Only one database at time can be processed, and to

continue one must be selected from the list. In this page it is also possible to set some parameters

that affect the behavior of the import engine:

- Import database information : by enabling this, additional information (regarding sup-

ported types, precision, size, etc.) is also included in the imported data. This information can

be useful for long term storage as future database systems are likely to have different data

types.

- Continue if a table is not found : forces the export also if a table is not found on the

database.

- Continue if database is not found : forces the import also if the database is not found.

- Force continue on error : tries to ignore every error and continues importing

Click Next to access the next page of the import wizard (see Figure 5.17).

A database can contain multiple tables: it is now possible to select which tables would get

imported. Click on entries to select, press the Ctrl key and click to perform multiple choices. Then

press Next to continue.

In the next page (Figure 5.18) it is required to decide the import policy to use: from the tables

selected in the previous page it is possible to export only the structure or only the data or both.

The user, as needed, must choose tables from both lists (to perform multiple choices press the Ctrl

key and click on list entries).

The import process will then start; when finished, it is possible to save the extracted data to a

file, by pressing on the Save data button (see Figure 5.19).

The destination node to which the imported data will be append is to be specified by mean of

an XPath expression. To proceed with import click on the Next button.

Figure 5.20 shows the last page of the wizard, as data has been successfully imported into the

XML document. If an error occurs, it will be displayed in the log text box.

Exporting data

Data extracted with the x.mill tool can be exported back to an external database. This operation is

also performed with the help of a graphical wizard, launched by selecting the Export to database

item, from the Export submenu in the Data menu. A window similar to the one shown in Figure

5.21.

CHAPTER 5. USER MANUAL 115

Figure 5.16: x.mill wizard (step 2)

Figure 5.17: x.mill wizard (step 3)

CHAPTER 5. USER MANUAL 116

Figure 5.18: x.mill wizard (step 4)

Figure 5.19: x.mill wizard (step 5)

CHAPTER 5. USER MANUAL 117

Figure 5.20: x.mill wizard (step 6)

Figure 5.21: Data export wizard

CHAPTER 5. USER MANUAL 118

Beside parameters needed to connect to the target database, an XPath expression pointing to

the source database node inside the XML document is needed. By clicking the Next button the

extraction process will take place, and data will be retrieved from roXanne server.

It is possible to save this data to a file by clicking on the Save XML data to file button (see

Figure 5.22). If errors occur a message is displayed in the operation log box.

Clicking the Next button will start exporting data to the target database. If error occurs, and

the Force continue on error checkbox was disabled, exporting will stop. As data migration is

completed, the Finish button in the final page (see Figure 5.23) will be enabled: click it to close

the wizard dialog.

5.3.11 Exporting data to file

Beside exporting XML data to an external database, it is also possible to export it to a file, by

selecting the Export data to XML from the Export submenu in the Data menu. A dialog

asking for the source element to be exported is displayed; it is also possible to set the depth of the

export: a depth of -1 means that all data is exported.

5.4 Example client adapter in Python

Beside the client application written in Java presented in the previous section, a simple Python [1]

example that can be used to connect to a server will be described in this section.

In this example a class named Pyrx is implemented: it wraps all important functions available

on the x.core component, such as retrieving and modifying data, generating and managing keys,

etc. At the end of the class definition, a test is also provided. Source code of the Pyrx class can be

found in Appendix C.

Connecting and interacting with the server is extremely simple, provided that a socket library

is available. Additionally a XML DOM parsing library is suggested (and required by the previous

example), to further extract information from provided results. As the described class can be

practically used from within a Python application, its methods deserve a more detailed description.

createSession(serverAddress, serverPort, loginName, password)

This method is used to create a new session on the specified server. The serverPort parameter can

be omitted and will default to 8351.

isConnected()

This method will return True if the Pyrx object has already created a session on the server.

CHAPTER 5. USER MANUAL 119

getSessionId()

This method returns the session identifier string associated to the open session.

closeSession()

This method is to be used to cleanly terminate a session on the server. If a session is not closed, it

will be automatically deleted by the server after a specified time.

generateKey(methodName, password)

Generates and returns a new key for the specified method (cipher). If a method requires a password

(like AES 128 or DESede) it can be specified with the password parameter. The key is returned

inside a list, so that keypairs are returned as a two elements list, wheras symmetric keys as a one

element list.

addKey(methodName, keyId, keyType, keyData)

This method adds a previously generated key to the current session on the server. It is necessary

to specify the method to which the key refers. Each key is identified by a string identifier that can

be freely chosen by the user. The keyType parameter can be either “encryption” or “decryption”.

The keyData parameter contains the data returned by the generateKey method.

removeKey(methodName, keyId, keyType)

This will remove the specified key from the server’s session. The keyType parameter specifies which

key (encryption or decryption) to remove.

doXPath(xpathExpression, depth)

This performs an XPath search on the server with the provided XPath expression. The depth of

results can be selected by mean of the corresponding parameter. Results are returned in form of a

xml.minidom document.

doXUpdate(xupdateQuery)

This method executes an XUpdate query on the server and returns True on successful completion,

or raises an exception on error.

encrypt(targetNode, methodName, keyId)

This encrypts the node identified by the XPath expression provided as targetNode, with the cipher

methodName and the key keyId.

CHAPTER 5. USER MANUAL 120

decrypt(targetNode)

This method decrypts the target node specified by the provided XPath expression.

bindNS(prefix, uri)

Use this method to bind a namespace in the current session.

unbindNS(prefix)

This method unbinds a namespace.

unbindAllNS()

This method unbinds all namespaces in the current session.

CHAPTER 5. USER MANUAL 121

Figure 5.22: Data export wizard

CHAPTER 5. USER MANUAL 122

Figure 5.23: Data export wizard

Figure 5.24: Export to file wizard

Chapter 6

Conclusion and Outlook

6.1 Chapter overview

In this final chapter, some notes about the development steps and problems encountered will be

presented as well as a conclusion on the work done. Also, possible further development directions

are discussed.

6.2 Conclusion

The goal of this thesis was to design and develop a solution for the long term data storage problem.

The result of this research work, RoXanne Framework, is a viable solution because it exploits

common and standardized technologies to provide a solid application.

The main contributions of this project include an approach to the long term storage problem

using standard data formats and an approach to user transparent and simpler cryptography usage.

Use of a data format that can assure longevity while maintaining an high exploitability factor

in the present is extremely important, because it means that data is not only safe stored for the

future but also still accessible and manageable today. The XML format seems to provide sufficient

guarantees in this sense.

The transparent encryption concept offers a simpler and faster way to access protected data and

motivates users to encrypt their sensible information. In fact, an important factor is that the easier

a technology is, more often it will be employed.

Finally graphical client interface, implemented as the x.click component, offers an easy to use

environment to manage XML data on the server and included wizards help the user performing

tasks without requiring client-server protocol knowledge.

123

CHAPTER 6. CONCLUSION AND OUTLOOK 124

6.3 Known issues

Nothing is perfect, and this application makes no exception. There are many things that have not

been implemented due to time or technologies constraints.

6.3.1 x.core component

At this time it is not yet possible to generate an XML signature of nodes, although this part

can be implemented in “client space“ and it is not necessarely to have it inside the server; one of

the main problems is that JDOM currently does not have support for XML canonicalization, so

adding signature generation was simply non-sense (at the moment). If a canonicalization engine

will be added to JDOM in the future, implementing node signature will be extremely easy, as the

cryptography infrastructure already provides asymmetric encryption support as well as hashing of

XML data.

Another limitation is the fact that concurrent access is managed with a pessimistic approach by

mean of an exclusive lock on the data. This solution is the simplest way to deal with parallel request

execution but offers worse performances than an optimistic approach.

6.3.2 x.click component

Currently the interface lacks some way to save the keyring entries to disk as it can be done with

namespace definitions. Also it is not possible to save session parameters, which must be entered

each time the program is executed.

6.4 Further directions

There are many possible enhancements that can be made to the current design of the framework.

Some of them have not been included in the first release of the framework as their specification

would have required too much time or would have gone beyond the scope of this master thesis.

6.4.1 Better access control

Currently sever’s access control is limited to a username and password check. This method is not

very secure, because it does not enforces further security after a successful login. A better way to

control access to the database would be to implement a privilege system: it would be then possible

to protect some paths inside the DOM tree from undesired access, by giving read and/or write

permissions only to a restricted number of people.

An additional security enhancement would be to implement a ”per-user” key system and non-

transferable keys (or keys signed by the generating system).

CHAPTER 6. CONCLUSION AND OUTLOOK 125

6.4.2 Multiple document support

Currently the server is only able to deal with one XML document at time. Support for managing

multiple documents within the same server is desirable.

6.4.3 XML Canonicalization and digital signature

Canonicalization of XML [45] data is essential for implementing a digital signature system for nodes.

Unfortunately the current JDOM library does not support it. As XML canonicalization and digital

signing (through XML DIGSIG [19]) are be available, security of the data storage framework would

be greatly improved because it would allow detecting unauthorized changes in information contained

in the document.

6.4.4 Better XML-ENC support

Currently the framework only supports a subset of all XML-ENC features. It would be interesting

to add support for external key references or external cipher data references. For this to work the

framework also needs to support the XPointer specification [16, 17].

6.4.5 Alternatives to JDOM

The JDOM library is well designed, but it shows some drawbacks when dealing with large XML

files because everything is done in memory. An improved version of the framework should either

enhance the JDOM library to support paging of DOM fragments and swapping from and to disk or

include a custom designed DOM implementation featuring on disk data management. Cleary either

solution should be designed to be (or to remain) compatible with existing support libraries such as

Jaxen and Jaxup.

6.4.6 Modular design

Currently encryption methods are hardcoded in the framework. A better design is to implement

them as pluggable modules that can be loaded at runtime. The same idea could be applied to the

server package (so that additional interfaces beside the TCP server can be plugged in) and the for

authentication system (Pluggable Authentication System).

6.4.7 Administration console

An administration console for the x.core component should be made available to manage permissions

and multiple XML documents. Currently it is possible to manage data from the x.click interface,

but other administrative tasks, such as access control, require changes in the configuration file. An

CHAPTER 6. CONCLUSION AND OUTLOOK 126

extension of the client-server protocol to support administration commands and operations will also

ease remote server management.

6.5 Development roadmap

As this project started almost from scratch an initial study phase was needed to get in touch with

some of the technologies involved: database design, encryption mechanism,...

First part (October 2004 - December 2004)

In the first months, the basic database development techniques were studied. Additionally the

requirements for each component of the framework were defined, already available libraries have

been chosen and needed documentation on the topic has been read.

Second part (January 2005 - June 2005)

In the second part of the project, the development took place: although the design model was already

defined in the first part, some unattended problems arose. In the final months, as the communication

protocol between the server and clients had already been defined, also the graphical user interface

has been developed. Finally the x.mill component, developed by Andrea Ghirlanda, was integrated

in the client application.

Third part (June 2005 - August 2005)

While performin some test sessions on the server and the client, this documentation was written.

Also some little problems and bugs were fixed.

6.6 Final words

As said before this project was not very easy to implement, as much of the work was done starting

from my personal ideas. Additionally, in such a long work it is easy to “lose the path”, or make

hard mistakes that require much time to recover from. The fact that this framework is divided in

three components also required to define good interfaces: for example the x.mill component had to

be designed to integrate with the x.click graphical interface.

By the way, the fact that the work was divided between two persons allowed better problem

discussion and solving.

Appendix A

XUpdate syntax definition

<!ENTITY % commands \"

xupdate:variable

| xupdate:insert-before

| xupdate:insert-after

| xupdate:append

| xupdate:update

| xupdate:remove

| xupdate:rename

\">

<!ENTITY % instructions \"

xupdate:element

| xupdate:attribute

| xupdate:text

| xupdate:processing-instruction

| xupdate:comment

\">

<!ENTITY % qname \"NMTOKEN\">

<!ENTITY % template \"

(#PCDATA

| %instructions;)*

\">

127

APPENDIX A. XUPDATE SYNTAX DEFINITION 128

<!ELEMENT xupdate:modifications (%commands;)*>

<!ATTLIST xupdate:modifications

id ID #IMPLIED

version NMTOKEN #REQUIRED

xmlns:xupdate CDATA #FIXED \"http://www.xmldb.org/xupdate\"

>

<!ELEMENT xupdate:insert-before (%instructions;)*>

<!ATTLIST xupdate:insert

select CDATA #REQUIRED

>

<!ELEMENT xupdate:insert-after (%instructions;)*>

<!ATTLIST xupdate:insert

select CDATA #REQUIRED

>

<!ELEMENT xupdate:append (%instructions;)*>

<!ATTLIST xupdate:insert

select CDATA #REQUIRED

child CDATA #IMPLIED

>

<!ELEMENT xupdate:element %template;>

<!ATTLIST xupdate:element

name %qname; #REQUIRED

namespace CDATA #IMPLIED

>

<!ELEMENT xupdate:attribute (#PCDATA)>

<!ATTLIST xupdate:attribute

name %qname; #REQUIRED

namespace CDATA #IMPLIED

>

<!ELEMENT xupdate:text (#PCDATA)>

APPENDIX A. XUPDATE SYNTAX DEFINITION 129

<!ELEMENT xupdate:processing-instruction (#PCDATA)>

<!ATTLIST xupdate:processing-instruction

name NMTOKEN #REQUIRED

>

<!ELEMENT xupdate:update (#PCDATA)>

<!ATTLIST xupdate:update

select CDATA #REQUIRED

>

<!ELEMENT xupdate:remove EMPTY>

<!ATTLIST xupdate:remove

select CDATA #REQUIRED

>

<!ELEMENT xupdate:rename (#PCDATA)>

<!ATTLIST xupdate:rename

select CDATA #REQUIRED

>

<!ELEMENT xupdate:variable (#PCDATA)*>

<!ATTLIST xupdate:variable

name NMTOKEN #REQUIRED

select CDATA #IMPLIED

>

<!ELEMENT xupdate:value-of EMPTY>

<!ATTLIST xupdate:value-of

select CDATA #REQUIRED

>

<!ELEMENT xupdate:if %template;>

<!ATTLIST xupdate:if

test CDATA #REQUIRED

>

Appendix B

Server’s replies exit codes

This appendix lists the possible exit code values returned by the server (see also Subsection 4.9.6).

exitCode Description Detail Note
200 Success Action performed successfully If no error occurred
110 Cannot remove namespace Invalid prefix nsunbind

binding
120 Invalid XPath query ¡reason¿ xupdate
121 SAXPath exception ¡reason¿ xupdate
122 Cannot perform XUpdate ¡reason¿ xupdate

Query
130 Cannot set namespace binding Prefix and/or URI null nsbind
140 Error Algorithm not found hash
141 Cannot locate data to calculate No node or multiple node hash

hash from found at the provided location
142 Error Cannot calculate hash hash
150 Cannot locate data to decrypt No node or multiple node decrypt

found at the provided location
151 Warning Node is not encrypted or decrypt

insufficient rights to decrypt it
152 Cannot perform decryption ¡stacktrace¿ decrypt

Table B.1: Server’s replies exit code

130

APPENDIX B. SERVER’S REPLIES EXIT CODES 131

exitCode Description Detail Note
160 Key not found Requested key was not found encrypt

in keyring
161 Cannot locate data to encrypt No node or multiple node encrypt

found at the provided location
162 Encryption of root node not It is not possible to encrypt encrypt

allowed the root node of the database
163 Cannot perform node <reason> encrypt

encryption
170 Error in key generation Cannot generate genkey
171 Cannot generate key Unknown algorithm genkey
180 Cannot locate data to get info No node or multiple node nodeinfo

found at the provided location
181 Cannot get node info <stacktrace> nodeinfo
190 Invalid XPath query <reason> xpath
191 Cannot perform XPath <reason> xpath

Table B.2: Server’s replies exit code (continued)

Appendix C

Simple Python adapter

This appendix presents a simple example of adapter written in Python. For more information please

refer to Section 5.4.

#!/usr/bin/python

"""

roXanne Framework simple Python interface

(c)2005 Amos Brocco <amos.brocco@unifr.ch>

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,

MA 02110-1301, USA.

"""

from socket import *

import xml.dom.minidom

132

APPENDIX C. SIMPLE PYTHON ADAPTER 133

class Pyrx:

def __init__(self):

self.__sessionId = None

self.__loginName = None

self.__password = None

self.__connection = None

self.__serverAddress = None

self.__serverPort = None

def createSession(self, serverAddress, serverPort=8351, loginName="", \

password=""):

""" Creates a new session on the server """

if serverPort is None:

serverPort = 8351

self.__serverAddress = serverAddress

self.__serverPort = serverPort

self.__loginName = loginName

self.__password = password

try:

s = socket(AF_INET, SOCK_STREAM)

s.connect((self.__serverAddress, self.__serverPort))

s.send("""<?xml version="1.0" encoding="UTF-8"?>

<roxannequery login="%s" password="%s"

persistent="true"/>""" % \

(self.__loginName, self.__password))

data = s.recv(8192)

s.close()

doc = xml.dom.minidom.parseString(data)

self.__sessionId = doc.firstChild.getAttribute("sessionId")

except:

raise Exception, "Cannot connect to server %s , port %s" % \

(self.__serverAddress, self.__serverPort)

def isConnected(self):

""" Returns true if the session is set """

return self.__sessionId is not None

APPENDIX C. SIMPLE PYTHON ADAPTER 134

def getSessionId(self):

""" Returns the session Id """

return self.__sessionId

def __execute(self, data, resultSize=8192, mantainSession="true"):

""" Executes a given command within the current session """

if self.__sessionId is None:

raise Exception, "No active session"

try:

s = socket(AF_INET, SOCK_STREAM)

s.connect((self.__serverAddress, self.__serverPort))

header = """<?xml version="1.0" encoding="UTF-8"?>

<roxannequery login="%s" password="%s" sessionId="%s"

persistent="%s">""" % \

(self.__loginName, self.__password, \

self.__sessionId, mantainSession)

s.send(header + data + """</roxannequery>""")

result = s.recv(resultSize)

s.close()

return result

except:

raise Exception, "Cannot communicate with server"

def closeSession(self):

""" Closes the session on the server """

self.__execute(data="",mantainSession="false")

self.__sessionId = None

def generateKey(self, methodName, password=None):

""" Generates a new key """

cmd = """<requests><action type="genkey" \

method="%s" password="%s"/>

</requests>""" % (methodName, password)

result = self.__execute(data=cmd)

doc = xml.dom.minidom.parseString(result)

resultNode = doc.firstChild.firstChild.firstChild.firstChild

APPENDIX C. SIMPLE PYTHON ADAPTER 135

exitCode = resultNode.getAttribute("exitCode")

if not exitCode == "200":

raise Exception, "Error on key generation"

if len(resultNode.childNodes) == 1:

return [resultNode.firstChild.firstChild.nodeValue]

else:

return [resultNode.firstChild.firstChild.nodeValue, \

resultNode.lastChild.firstChild.nodeValue]

def addKey(self, methodName, keyId, keyType, keyData):

""" Adds a key to the server """

cmd = """<keychain><addkey method="%s" id="%s"> \

<%s>%s</%s></addkey>

</keychain>""" % (methodName, keyId, keyType, keyData, keyType)

result = self.__execute(data=cmd)

doc = xml.dom.minidom.parseString(result)

addKeyNode = doc.firstChild.firstChild.firstChild

result = addKeyNode.getAttribute(keyType)

if not result == "added":

raise Exception, "Error while adding key"

return True

def removeKey(self, methodName, keyId, keyType):

""" Removes a key from the server """

cmd = """<keychain><removekey method="%s" keyId="%s" flag="%s"/>

</keychain>""" % (methodName, keyId, keyType)

result = self.__execute(data=cmd)

doc = xml.dom.minidom.parseString(result)

addKeyNode = doc.firstChild.firstChild.firstChild

result = resultNode.getAttribute("keyType")

if not result == "removed":

raise Exception, "Error while removing key"

else:

return True

def doXPath(self, xpathExpression, depth="0"):

""" Perform an XPath search """

APPENDIX C. SIMPLE PYTHON ADAPTER 136

cmd = """<requests><action type="xpath" depth="%s">%s</action>

</requests>""" % (depth, xpathExpression)

result = self.__execute(data=cmd)

print result

doc = xml.dom.minidom.parseString(result)

resultNode = doc.firstChild.firstChild.firstChild.firstChild

return resultNode.childNodes

def doXUpdate(self, xupdateQuery):

""" Execute an XUpdate query """

cmd = """<requests><action type="xupdate" version="1.0"

xmlns:xupdate="http://www.xmldb.org/xupdate">%s</action>

</requests>""" % (xupdateQuery)

result = self.__execute(data=cmd)

doc = xml.dom.minidom.parseString(result)

resultNode = doc.firstChild.firstChild.firstChild.firstChild

exitCode = resultNode.getAttribute("exitCode")

if not exitCode == "200":

description = resultNode.firstChild.nodeValue

detail = resultNode.lastChild.nodeValue

raise Exception, "Error on XUpdate execution. %s : %s" \

%(description, detail)

return resultNode.childNodes

def encrypt(self, targetNode, methodName, keyId):

""" Encrypts a node """

cmd = """<requests><action type="encrypt" method="%s" keyId="%s">%s

</action></requests>""" % (methodName, keyId, targetNode)

result = self.__execute(data=cmd)

doc = xml.dom.minidom.parseString(result)

resultNode = doc.firstChild.firstChild.firstChild.firstChild

exitCode = resultNode.getAttribute("exitCode")

if not exitCode == "200":

description = resultNode.firstChild.nodeValue

detail = resultNode.lastChild.nodeValue

raise Exception, "Error on node encryption. \

%s : %s" %(description, detail)

APPENDIX C. SIMPLE PYTHON ADAPTER 137

return True

def decrypt(self, targetNode):

""" Decrypts a node """

cmd = """<requests><action type="decrypt">%s</action>

</requests>""" % (targetNode)

result = self.__execute(data=cmd)

doc = xml.dom.minidom.parseString(result)

resultNode = doc.firstChild.firstChild.firstChild.firstChild

exitCode = resultNode.getAttribute("exitCode")

if not exitCode == "200":

description = resultNode.firstChild.nodeValue

detail = resultNode.lastChild.nodeValue

raise Exception, "Error on node decryption. \

%s : %s" %(description, detail)

return True

def bindNS(self, prefix, uri):

""" Binds a namespace """

cmd = """<requests><action type="nsbind" prefix="%s" uri="%s"/>

</requests>""" % (prefix, uri)

result = self.__execute(data=cmd)

doc = xml.dom.minidom.parseString(result)

resultNode = doc.firstChild.firstChild.firstChild.firstChild

exitCode = resultNode.getAttribute("exitCode")

if not exitCode == "200":

description = resultNode.firstChild.nodeValue

detail = resultNode.lastChild.nodeValue

raise Exception, "Error on namespace binding. %s : %s" \

%(description, detail)

return True

def unbindNS(self, prefix):

""" Unbinds a namespace """

cmd = """<requests><action type="nsunbind" prefix="%s"/>

</requests>""" % (prefix)

result = self.__execute(data=cmd)

APPENDIX C. SIMPLE PYTHON ADAPTER 138

doc = xml.dom.minidom.parseString(result)

resultNode = doc.firstChild.firstChild.firstChild.firstChild

exitCode = resultNode.getAttribute("exitCode")

if not exitCode == "200":

description = resultNode.firstChild.nodeValue

detail = resultNode.lastChild.nodeValue

raise Exception, "Error on namespace unbinding. %s : %s" \

%(description, detail)

return True

def unbindAllNS(self):

""" Unbinds all namespaces """

cmd = """<requests><action type="nsunbindall"/></requests>"""

result = self.__execute(data=cmd)

doc = xml.dom.minidom.parseString(result)

resultNode = doc.firstChild.firstChild.firstChild.firstChild

exitCode = resultNode.getAttribute("exitCode")

if not exitCode == "200":

description = resultNode.firstChild.nodeValue

detail = resultNode.lastChild.nodeValue

raise Exception, "Error on all namespaces unbinding. \

%s : %s" \

%(description, detail)

return True

TEST ROUTINE

if __name__ == ’__main__’:

a = Pyrx()

a.createSession(serverAddress="localhost", loginName="Amos", \

password="test")

a.isConnected()

symkey = a.generateKey("AES_128","asimplepassword")

asymkey = a.generateKey("RSA_V1_5")

a.addKey("AES_128","myaeskey","encryption",symkey[0])

APPENDIX C. SIMPLE PYTHON ADAPTER 139

a.addKey("AES_128","myaeskey","decryption",symkey[0])

a.addKey("RSA_V1_5","myrsakey","decryption",asymkey[0])

a.addKey("RSA_V1_5","myrsakey","encryption",asymkey[1])

a.bindNS("default","http://www.sample.com/tips/#2005ns")

a.bindNS("test","http://www.sample.com/tips/#2004ns")

a.unbindNS("default")

a.unbindAllNS()

a.encrypt("/spec/griffin","AES_128","myaeskey")

a.doXUpdate("""<xupdate:append select="/spec/griffin"><examplenode/>

</xupdate:append>""")

a.decrypt("/spec/griffin")

a.closeSession()

a.isConnected()

Bibliography

[1] Alex Martelli, Python in a Nutshell, Paula Ferguson and Laura Lewin editors, O’Reilly, 2003.

[2] MySQL AB, MySQL Reference, http://www.mysql.com, last visited October 21., 2005..

[3] Herbert Schildt, Java 2 The Complete Reference Fifth Edition, Osborne, 2002.

[4] Don Chamberlin, Denise Draper et al., XQuery from the Experts A Guide to theW3C XML

Query Language, Howard Katz, aug 2003.

[5] U.S. Bureau of Industry and Security, Department of commerce, Commercial Encryption Export

Controls, http://www.bis.doc.gov/encryption/default.htm, last visited October 21., 2005..

[6] Wikipedia.org, Criptography, http://www.wikipedia.org, last visited October 21., 2005..

[7] Wikipedia.org, AES, http://www.wikipedia.org/wiki/AES, last visited October 21., 2005..

[8] Wikipedia.org, DES, http://www.wikipedia.org/wiki/DES, last visited October 21., 2005..

[9] Wikipedia.org, RSA, http://www.wikipedia.org/wiki/RSA, last visited October 21., 2005..

[10] Wikipedia.org, ACID, http://en.wikipedia.org/wiki/ACID, last visited October 21., 2005..

[11] W3C Group, XML Path Language (XPath) Version 1.0 W3C Recommendation,

http://www.w3.org/TR/xpath, nov. 1999, last visited October 21., 2005..

[12] Graeme Malcolm, Programmare Microsoft SQL Server 2000 con XML, Seconda Edizione, Mon-

dadori Informatica 2002.

[13] Hector Garcia-Molina et al., Database Systems, The Complete Book, Prentice Hall Pearson

Education International, Alan R.Apt, 2002.

[14] XML: DB Initiative, XML:DB Initiative for XML Databases, http://xmldb-org.sourceforge.net,

last visited October 21., 2005..

[15] XML: DB Initiative, XUpdate - XML Update Language, http://xmldb-

org.sourceforge.net/xupdate/, last visited October 21., 2005..

140

BIBLIOGRAPHY 141

[16] Elliotte Rusty Harold, W. Scott Means, XML In a Nutshell, O’Reilly, 2002.

[17] W3C Group, XML Pointer Language (XPointer) Working Draft, http://www.w3.org/TR/xptr,

aug. 2002, last visited October 21., 2005..

[18] PostgreSQL Global Development Group, PostgreSQL reference, http://www.postgresql.org,

last visited October 21., 2005..

[19] Donald E. Eastlake III and Kitty Niles, Secure XML,The New Syntax for Signatures and En-

cryption, Addison-Wesley, jul 2002.

[20] Akmal B. Chaudhri et al., XML Data Management, Native XML and XML-Enabled Database

Systems, Addison-Wesley, mar 2003.

[21] JDOM library, Jason Hunter and Brett McLaughlin, http://www.jdom.org, last visited October

21., 2005..

[22] Jaxen Universal Java XPath Engine, Codehaus, http://www.jaxen.org, last visited October 21.,

2005..

[23] A Java XML Update engine, http://klomp.org/jaxup/, last visited October 21., 2005..

[24] Sun Microsystems, Java Cryptography Architecture, http://java.sun.com/j2se/1.5.0/docs/guide/security,

last visited October 21., 2005.

[25] The Bouncy Castle Crypto APIs, http://www.bouncycastle.org/, last visited October 21., 2005..

[26] Sun Microsystems, Java Cryptography Extension, http://java.sun.com/products/jce, last vis-

ited October 21., 2005..

[27] Archives et législation, Délais et supports de conservation,

http://www.archives.ch/docs/legislation.pdf, last visited October 21., 2005..

[28] JArgs command line option parsing suite for Java, http://jargs.sourceforge.net/, last visited

October 21., 2005..

[29] Berth Bos, What is a good standard?, An essay on W3C’s design principles,

http://www.w3.org/People/Bos/DesignGuide/toc.html, last visited October 21., 2005..

[30] Frank Naudé Oracle XML FAQ, http://www.orafaq.com/faqxml.htm, last visited October 21.,

2005..

[31] Paul Dubois, Using XML with MySQL, http://www.kitebird.com/articles/mysql-xml.html, last

visited October 21., 2005..

BIBLIOGRAPHY 142

[32] Carnegie Mellon University, Software Engineering Institute, Two Tier Software Architectures,

http://www.sei.cmu.edu/str/descriptions/twotier.html, last visited October 21., 2005..

[33] DOM4J, The flexible XML framework for Java, www.dom4j.org, last visited October 21., 2005

[34] Ross Lee Graham, Locks, http://www.ida.liu.se/T̃DDB38/2002/LectureOH/Le12.htm.

[35] Ivan Baldassi, XPath tutorial, www.ilgiovine.com.

[36] W3C Group, Document Object Model, http://www.w3.org/DOM/, last visited October 21.,

2005.

[37] W3C Group, SOAP Specification, http://www.w3.org/TR/soap/, last visited October 21.,

2005.

[38] W3C Group, XML Schema, http://www.w3.org/XML/Schema, last visited October 21., 2005.

[39] W3C Group, XPath 2.0 Working Draft, http://www.w3.org/TR/2005/WD-xpath20-

20050915/, last visited October 21., 2005.

[40] Eclipse Foundation, SWT: The Standard Widget Toolkit, http://www.eclipse.org/swt/, last

visited October 21., 2005.

[41] Netbeans.org, Tuning JVM switches for performance, http://performance.netbeans.org/howto/jvmswitches/,

last visited October 21., 2005.

[42] UserLand Software, XML-RPC, http://www.xmlrpc.com/, last visited October 21., 2005.

[43] Sun Microsystems, JavaTM HotSpot VM Options, http://java.sun.com/docs/hotspot/VMOptions.html,

last visited October 21., 2005.

[44] W3C School, XML Schema Tutorial, http://www.w3schools.com/schema/default.asp, last vis-

ited October 21., 2005.

[45] W3C Group, Canonical XML Version 1.0, W3C Recommendation 15 March 2001,

http://www.w3.org/TR/2001/REC-xml-c14n-20010315, last visited October 21., 2005.

[46] Andreas Meier, Introduction pratique aux base de données relationelles, Springer, 2002.

[47] Sun Microsystems, Java 2 Platform 1.5.0 documentation, Properties,

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html, last visited October

21., 2005.

