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Abstract. BlatAnt is a distributed and adaptive algorithm inspired by
Ant Colony Optimization (ACO) to create overlay networks with small
diameter by adding and removing logical links. In contrast to most ex-
isting methods, our algorithm is dynamic and can be used in evolving
networks, where dynamic connections and disconnections are possible.
Simulation results show that our approach produces and maintains net-
works with bounded diameter. A formal proof of the logic behind the
algorithm is also provided.

1 Introduction

In the 1960’s, social psychologist Stanley Milgram brought to the light the fact
that people are commonly linked by short chains of acquaintances of an average
length of six. This surprising observation, which was then supported by empirical
experiments, initiated the so called “six degrees of separation” myth and a wide
spread of research on the “small-world” phenomenon. In particular, the scientific
community saw a growing interest for analytical models reproducing those social
community properties, as a mean to predict and analyze social dynamics.
Beside from networks of individuals, the small-world phenomenon can also
emerge from other kinds of networks; as pointed out in [9], networks of plane
routes, or power distribution grids, also exhibit short paths between entities.

! From Harald Blatand, the king thought to have reunited Denmark, Norway, and
Sweden under a unique kingdom.



Early attempts at modeling small-worlds were based on random graph aug-
mentation [2]. As subsequently proved in [3], random graphs have indeed small
diameters, but fail to reproduce another important characteristic of real small-
worlds: a high clustering coefficient. Roughly speaking, the clustering coefficient
of a graph represents the average number of neighbors of a vertex which are con-
nected to each others: for networks of individuals, it is commonly observed that
friends know each others. Later models [14, 15] fixed this issue by augmenting
the graph according to a probability distribution and achieved a better similarity
to real social networks.

Unfortunately, although being able to display the same observable topological
characteristics of real networks, probabilistic models still failed to explain how
Milgram’s experiment succeeded given the very little information available to
each peer. This question was answered by Jon Kleinberg [16], who introduced a
decentralized “greedy-routing” algorithm where routing choices are based only
on local information available on the current node. A small-world network where
such an algorithm is able to produce short paths between nodes is said to be
navigable. Practical situations where small-diameter networks are interesting is
undoubtfully resource discovery in distributed systems. By bounding the number
of hops required to reach every other node, it is possible to design efficient query
broadcast algorithms even in unstructured virtual networks.

This technical report describes a collaborative distributed algorithm that
reorganizes an existing network by adding and removing logical links in order
to reduce its diameter. The algorithm is based on swarm intelligence and ant
colony optimization, and makes use of different ant species to collect and gather
information across the network. Our approach is completely distributed and de-
centralized and does not require any kind of global knowledge; thus it is suitable
for P2P and grid networks.

Swarm intelligence concerns algorithms inspired by the coordinated behavior
of insect swarms in the real world. Ant colony optimization is a field of swarm
intelligence that replicates the interaction between ants. Research in both fields
has lead to algorithms and methods that are able to solve a variety of prob-
lems, such as TSP, network load balancing, and routing. Ants are mobile agents
with limited capabilities, nevertheless global optimal solution emerges from their
collaborative behavior.

This paper is organized as follows: Section 2 discusses related work in the
field of network ant algorithms, graph augmentation algorithms, and distributed
resource discovery approaches. Section 3 presents the basic rules proposed in our
approach, along with an analytical proof of their correctness. Section 4 provides
a detailed description of the BlatAnt algorithm. Section 5 presents the results of
empirical evaluations in static and dynamic scenarios; finally, Section 6 contains
a conclusion on the work done and provides some insights on possible future
research directions.



2 Related Work

Ant algorithms are bio-inspired methods imitating the behavior of real ants.
These algorithms belong to a branch of artificial intelligence called Ant Colony
Optimization (ACO)[4, 5]. The ACO metaheuristic has already been proven suc-
cessful for solving different problems such as the Traveling Salesman Problem
(TSP) [13], load balancing problems in distributed computing systems [6,11],
or routing [8,10]. ACO itself is part of a larger branch of artificial intelligence
called swarm intelligence, which groups all methods inspired by the behavior of
swarm of insects. One of the advantages of ant algorithms is their intrinsic dis-
tributed nature, which permits a quasi-immediate application to network related
problems where global knowledge is not available.

By mean of different collaborating species of ants, the BlatAnt algorithm
aims at bounding the diameter of an existing network by intelligently adding
additional logical links. Such rewiring of the network will allow the implemen-
tation of other network algorithms exploiting the short distance between any
node. In particular, we target resource discovery in dynamic grid systems.

By looking at existing graph augmentation methods, we can find various ap-
proaches based on random augmentation graphs. These algorithms, for example
[14,2, 15], generate networks with Small-World properties using a global knowl-
edge of the system. A first example of decentralized approach can be found in
[17], and an improved version is detailed in [18]. This last example shows that
distributed augmentation of a graph is possible, nonetheless the algorithm pro-
posed in that paper still requires some kind of a priori knowledge of the network,
and is not adaptive with respect of the topology of the network. Our approach
overcomes this problem by exploiting the adaptivity of ant algorithms.

One of the goals of our research is also to support efficient resource discov-
ery in distributed systems, namely computing grids. In the field of P2P and
Grid networks, there exist many solutions that use small-diameter networks to
improve resource discovery and optimize routing of queries.

Resource discovery in distributed systems is a challenging task: as there is no
global knowledge of the network, the worst case for locating a resource requires
querying every other node. Ideally, a resource discovery algorithm must be able to
find every available resource, in finite time, and with the lowest communication
cost.

Existing solutions are commonly based on two approaches: distributed hashta-
bles (DHTSs) and flooding. Many examples of distributed hashtable protocols
([19-21]) enforce strict topologies to keep predictable distances and determin-
istic routing of queries. Unfortunately, this requires a global knowledge of the
network or the partitioning of the search space in order to correctly assign links.
For this reason, such solutions are of little or no interest in unstructured networks
without centralized information. An exception is represented by Symphony [22],
which is based on a completely randomized topology, where nodes have both a
short and long distance links: construction of this network starts with a ring,
and long distance links are added according to a probability distribution as
in small-worlds models. Unfortunately even such solution has some drawbacks



when it comes to grid systems. DHT applications typically manage resources
such as files, whose content does not change so often. In grid systems, resource
availability and type changes frequently, and computing resources are not relo-
catable. It is thus impossible to partition the search space or assign resources to
nodes according to their position. In general, as pointed out in [29], hierarchical
solutions would not adapt to the volatile and heterogeneous nature of resources
shared in a grids. For these reasons, decentralized, unstructured, self-configuring
architectures are a better alternative for grids.

Discovering resources in unstructured and dynamically evolving networks is
best accomplished using flooding algorithms, which involves querying as many
nodes as possible. Flooding does not typically require special topologies, but to
avoid large network overheads it is necessary to limit the search space and avoid
forwarding multiple copies of the same query [31]. This can be accomplished by
setting a TTL (Time-To-Live) for each query, in order to limit the maximum
number of forwardings. By knowing the maximum diameter of the network it is
possible to determine the worst case distance, and adapt the TTL accordingly.

Cutting down distances in the network to improve flooding methods has been
already used in [32]. A small-world overlay graph is created by differentiating
between nodes that produce jobs, and nodes who execute jobs. The particular
ring topology used by the algorithm ensures that queries sent by producer nodes
only travel for short distances before reaching a consumer node.

Further examples of decentralized search in small-world networks are dis-
cussed in [23], and some examples of construction of overlay networks with
small-world characteristics are presented. Other projects [25-27], propose a peer
clustering based on the information shared, thus reducing the distance between
nodes with similar offer. Nonetheless these solutions are not geared toward grid
environments.

Existing research and solutions show that resource discovery in unstructured
networks can be optimized by augmenting the existing network and reduce the
distance between nodes. The BlatAnt algorithm supports this idea by providing a
way to bound the diameter of an overlay network through the addition of logical
links. In contrast to most graph augmentation algorithms, BlatAnt is completely
decentralized, and does not require a global knowledge of the network. Finally,
thanks to the continuous work done by ants, the algorithm is able to control
even dynamic networks without supervision.

3 Centralized Algorithm

BlatAnt is a distributed algorithm executed on a network which can be repre-
sented as a finite graph G. The goal of the algorithm is to rewire the network in
order to bound its diameter into a certain interval determined by an user-defined
parameter D. The rewiring process consists in adding and removing logical links
between nodes. This sections details the rules used by the algorithm and provides
a formal proof valid in the case of a centralized version with global knowledge
of the network.



A detailed description of the actual distributed version along with an empir-
ical evaluation follows in Sections 4 and 5.

3.1 Definitions

For the sake of clarity, we present here the recurring terms used throughout the
rest of this paper.

Definition 1. A graph is a set (V,E) of nodes and edges. In the considered
scenario, a graph is a computer network consisting of nodes and un-directed
links.

Definition 2. A node n; is adjacent to another node n; if there exist an edge
(ns,nj) € E. The neighborhood set N; of node n; is the set of nodes adjacent
to n;. In undirected graphs, adjacency is commutative: n; € N; < n; € Nj.

Definition 3. We consider a node n; as connected to another node n; iff n;
is adjacent to n;.

3.2 Connection and Disconnection Rules

The rewiring process is based on two rules that are applied iteratively on the
graph G representing the network. These rules only depend on a single integer
parameter D > 0, which is adjustable according to the desired result. A first
rule determines whether the distance between two nodes is too large, thus a
shortcut connection is desirable. The second rule does the opposite by detecting
and removing redundant links.

Rule 1 (Connection Rule). Let n; and n; be two non-connected nodes in the
network graph G, and dg(n;,n;) the minimal distance from n; to n; in G. We
connect n; to n; if:

Rule 2 (Disconnection Rule). Let n; and n; be two connected nodes in the
network graph G, i # j. Let G' — G\ {n;}, and N; be the set of all nodes
adjacent to n;. Node n; is disconnected from n; € N; if:

dny € Nj,k#j : dG/(nj,nk)—i—lSD (2)

3.3 Proof of Correctness

We now prove that, for any undirected finite graph G, with a global knowledge
and in a finite number of steps, it is possible to create a graph with a diameter
less than 2D — 1 by applying Rule 1 and 2 in any order.



Lemma 1 (Convergence of Rule 1). For a given graph G, let be Go = G
and Gp4+1 the graph obtained by applying Rule 1 to G,, for two randomly chosen
nodes. Then 3k >0, Vi>1 : Gy = Gygi, t.e. YV ny,n; € G @ dg, (ns,nj) <
2D —1.

Proof. Since the function on the distances resulting from the application of Rule
1 is monotone decreasing, for k£ big enough, result follows. O

Lemma 2 (Monotonicity of Rule 1). Let G’ be a graph obtained by applying
Rule 1 to G. Then

El ni,n; € G : Rule 2 applies — El ni,n; € G' : Rule 2 applies

Proof. Let (n;,n;), ni,n; € G, the edge added by Rule 1. Because of the mini-
mality of dg(n;, n;), the smallest cycle in G” has length [ > 2D—1+4+1=2D > D.
(|

Lemma 3 (Safeness). Applying Rule 2 cannot disconnect a connected graph.

Proof. Consider a connected graph G, and three nodes n;,n;,n, € G, such that
nj,ng € Nj. If there exists a path between n; and ny, satisfying (2), there are
at least two disjoint paths from n; to both n; and n; in G. Thus, removing a
single edge cannot disconnect G. O

Corollary 1 (Convergence of Rule 2). Given a graph G, let be Gy = G,
and Gp41 the graph obtained by applying Rule 2 to G,, for two randomly chosen
nodes. Then 3k >0, VI>1:Gr = Gpyy.

Theorem 1. Given a graph G, let be Goo = G, and Gy, the graph obtained by
applying, in any order, n times Rule 1 and m times Rule 2 on G o for randomly
chosen nodes. Then 3 k> 0,31 > 0, and B ni,n; € Gy, such that Rule 1 or
Rule 2 apply.

Proof. Follows directly from Lemmas 1, 2, 3, and Corollary 1. O

Because of Rule 2, the resulting graph has a clustering coefficient equal to
zero. In other words, graphs created with our algorithm will not not have full
small-world characteristics. Figure 1 shows an example path graph consisting of
20 nodes; the initial diameter is 19, and D = 3. By applying both rewiring rules,
we obtaing a graph (Figure 2) with a diameter of 4 (< 2D — 1 =5).

4 BlatAnt Algorithm Description

This section describes the logic behind the BlatAnt algorithm, along with its
data structures. The algorithm is completely distributed and asynchronous, and
makes use of Rules 1 and 2 presented in the previous section. For the rest of this
paper we will refer to these rules simply as rewiring rules.



Fig. 1. Initial graph Fig. 2. Resulting graph

Each node in the network (or vertex in the graph) executes independently
using local partial information about the network. In order to propagate and
update that local information, we propose the use of ants. An ant is a lightweight
mobile software agent that is executed on nodes. During execution, ants can
migrate from node to node to access and manipulate local data structures. Ants
wander across the network to collect and spread available information, and a
global optimal solution of the problem of reducing network diameter is produced
through successive local optimizations done by single nodes.

Since the algorithm is distributed and runs without a global view of the
network, Rule 2 becomes extremely important to remove redundant links erro-
neously created by Rule 1, thus avoiding the creation of cliques. Because of the
continuous work of ants, the algorithm is able to keep minimal diameters even
in dynamic scenarios and evolving networks.

4.1 Node Data Structures

Each node n; in the network maintains some data structures to store partial
network information and data produced during the execution.

Alpha table «; The «; table stores local information about the network. Data
in the table is constantly updated by mean of the information gathered by ants.
Each entry contains information about a node n;,j # i:

— distance, the estimated distance d from n; to n;,

— neighbors, neighbors’ identifiers {ng} with ny € N,

— timestamp;, local time (local time of the last update),

— timestamp;, remote time (local time at the remote node).



The local time value is used to clean the oldest entries in the table when
its size reaches a user-defined maximum; the remote time is used to determine
if an incoming information is newer than the existing one. Because the quality
of the solution found by the algorithm depends on the information available on
each node, the size of the alpha table should be limited only be the storage and
computational capacity of the node.

Beta Pheromone Trail In order to detect the departure of a node from the
network, a pheromone trail is used to keep track of the liveness of neighbors.
Ants coming from n; increase the pheromone concentration §;[n;] on n;, so that
the trail effectively keeps track of the incoming traffic from that particular link. If
the pheromone evaporates completely, the neighbor is assumed to be dead, and
a disconnection procedure is started. Because connections and disconnections
are performed asynchronously, the 8 pheromone is also used to remove stale
connections resulting from unsuccessful rewiring actions.

Gamma Pheromone Trail To force a complete coverage of the network, a
pheromone trail is used to direct ants to underexploited paths. For each n; € IV;
there exist a trail v;[n;] > 0. When an ant moves from n; to a neighbor n;, it lays
some pheromone that increases the concentration of 7;[n;]. At each wandering
step, with probability «, an ant can chose to follow an existing trail instead
of proceeding at random. If multiple trails are encountered, the trail with the
lowest concentration is chosen.

4.2 Ant Species

The rewiring of the network is assisted by different species of ants accomplishing
specific tasks. Regardless of their species, all ants share a common set of features:

— ants have only access to information on the current node;
— ants can only sense or reinforce local trails;

— every ant remembers the node n; where it comes from;

— every ant remembers the neighbors N; of n;.

As said before, when an ant moves from a n; to n;, a small concentration of
gamma pheromone is deposed on 7;[n;]. Inversely, each time an ants arrives on
a node n; it hands out its information about the previous node n;, and increases
the beta pheromone concentration 3;[n;]. Ants have a maximum lifetime ¢, which
is the maximum number of migration steps it can perform before being killed
by the system.

Discovery Ant Discovery ants wander across the network, collecting and spread-
ing information about visited nodes. This information is stored in a fixed-size
circular buffer V' of length [y carried by the ant. When the ant arrives on node
ng, a triple containing the identifier of the node ny, (in real networks, typically



the IP address), the identifiers its neighbors Nj, and the local timestamp ¢y, is
added to V. Discovery ants on node n; are only allowed to migrate to a node
contained in a restricted neighborhood set N,*, which contains all nodes in NN;
without already visited nodes. If N = (), the circular buffer is emptied (V « 0)
and N} is re-initialized to N; (N « N;). The choice of the migration target
node is done as follows:

— with probability x the target is chosen at random from N;
— with probability 1 — x, the neighbor with the lowest corresponding ~ trail is
chosen (i.e n; such that v;[n;] = ming{y;[ng] | n € N;j}).

The behavior of a Discovery ant is illustrated in Algorithm A.1. At regular
discrete intervals of length ¢, each nodes generates, with probability u, a new
Discovery ant. This prevents the complete extinction of the ant population in the
event of node or network crashes. The value of I}, determines the lookup capacity
of each node, thus higher values help lowering the errors derived from the use of
a local information about the network. As the transmission cost increases with
the size of the buffer, a compromise must be made.

Depending on the network topology, it could be desirable to favor random ex-
ploration instead of following the lowest gamma trail concentration by adjusting
the value of x to higher values.

Link Ant Link ants are instantiated by a node aiming to connect to another
node. The ant migrates from the node requesting the connection n;, to a target
node n;. There, the ant checks if the distance estimation from n; to n; satisfies
Condition 1 from Rule 1, and eventually calls the connection procedure on n;
for n; Finally, the ant migrates back to n;, the distance to n; is checked once
again, and eventually the connection procedure for n; on n; is executed. The
whole process is detailed in Algorithm A.2.

Unlink Ant Unlink ants are used to disconnect from a node either because the
link is in a cycle satisfying Rule 2, or because the neighbor is dead (3;[n;] — 0).
During the first phase, the ant migrates from n; to n;; if migration fails, n; is
immediately removed from the neighbors set N; and both the beta and gamma
trails corresponding to n; are removed. On n;, n; is removed from N;, and both
Bj[ni] and v;j[n;] are cleared. The ant then proceeds by moving back to n; where
the final steps are performed: removal of n; from N; and clearing of §;[n;] and
~i[n;]. The behavior of Unlink ants is described in Algorithm A.3.

4.3 Frozen Connections

In Section 3 we proved that the centralized version of the algorithm cannot
disconnect a connected network. Unfortunately, because in the decentralized
version all actions are started independently and concurrently by nodes, Lemma
3 does not apply. Mechanisms to recover from network disconnection have not yet
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been implemented in the algorithm, thus to avoid an accidental disconnection of
the network, we freeze initial and user-created links. The algorithm is not allowed
to remove frozen connections, thus we suppose that the information about the
status of a link is available on the node.

4.4 Timing

Each node n; maintains a logical time ¢; which is updated by events of incoming
and outgoing ants. By using a logical time instead of real time it is possible to
adjust pheromone evaporation according to the traffic passing through the node,
thus preventing nodes with limited ant flows from clearing their information too
rapidly.

4.5 Pheromone Reinforcement and Evaporation

Each pheromone trail 7 is reinforced according to the following formula:
T—T+6

where ¢ is the quantity of pheromone to be laid on the trail. The evaporation
process is executed at regular intervals w, and updates the concentration of a
pheromone trail as follows:

T— T

for a decay value ¢ < 1. If 7 < ¢, for a small value ¢ ~ 0, the trail is
completely removed and its value set to zero.

4.6 Algorithm Phases

There are four phases executed by the algorithm: inform, evaluate, connect, and
disconnect. During the inform phase, discovery ants gather information about
the network, and pass it to visited nodes. At regular intervals, nodes enter the
evaluate phase and determine if it is necessary to connect or disconnect to other
peers. Connection and disconnection phases are triggered by decisions made
during the evaluation phase.

Inform Phase Discovery ants wandering on the network, collect information
into their buffer V' and pass it to the node n;. This data is used to update
the alpha table alpha,. For each triple (n},, Nj,t}.), if t}, > o;[ng][tx], the entry
corresponding to ny is updated as follows:

o [ne][te] < t,

ai[ng] [Ne] < N,

oi[ng][ti] — t;

If o; does not contain an entry for ny, a new entry is created.
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Evaluate phase At regular intervals w, each node determines if new connections
need to be made and if existing connections are redundant, and thus they can be
removed. For the rest of this section, we describe the algorithm from perspective
of a node n;.

Evaluating a Connection To reduce the diameter the network, each node has
to compute the distances separating him from other nodes, and check if Rule 1
applies. In the first step, a graph G is constructed using the local information
available in the a; table and the neighbor set IN;. Then, the distance ds(n;,n;)
Vn; € G\ {n;} is computed. For each node n; satisfying condition (1), a con-
nection procedure is initiated by sending a LinkAnt from node n; to n;. Since
da(nisnj) > da(ng, nj), this the rule is valid also with partial data.

Because the maximum observable distance in G depends on the size of the
circular buffer carried by the Discovery ant, the length of V' [y, needs to be
greater or equal to 2D — 1. The pseudo-code of this evaluation phase is detailed
in Algorithm A.8.

Evaluating a Disconnection A graph G based on «a; and N; is constructed. Be-
cause frozen connections cannot be removed, evaluation is based on a restricted
neighbor set N/ , N/ < N; N A\ {n; € N; | link from n; to n; is frozen}. The
set A contains all valid keys found in the alpha table, thus N/ is the set of all
neighbors with a non-null entry in the alpha table, and whose connection with
n; is not frozen. For node in n; € Ny, the distance d(n;,ni) Vni € Ni \ {n;},
is computed.

Definition 4. Function max}, takes a list of nodes on a path and returns the
node with the greatest identifier which has at least a non-frozen link with either
its successor or its predecessor on the path. For that, we suppose that in the alpha
table not only the neighbors of a node are available, but also the status of each
link.

Because more than one node can detect the same cycle, we avoid the dis-
connection of the graph by only allowing one node to proceed. Hence, node n;
first checks is 2 holds, and then if n, > maxzl{p,...,q}, where {p,... q} is
the detected cycle. If all requirements are satisfied, a UnlinkAnt is sent from
node n; to n;. As ds(nj,ng) < da(nj,ng), we ensure that after disconnection
d(n;,n;) < D. Algorithm A.9 shows the pseudo-code of the who le procedure.

Connection A nodes connects n; to another node n; by first adding n; to N;
and then updating the information in the «; table. Updating the alpha table
consists in re-evaluating the distances of all entries knowing that distance to n;
has become 1. As a connection is not performed atomically on both end points,
at any moment the network could represent a directed graph.

Disconnection Disconnection from a node n; is performed by removing n; from
the local neighbor set N;, thus preventing any ant from migrating to n;. Addi-
tionally, the information about n; in a; and of all nodes close to it are updated:
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for n;, the distance is set to the maximum possible distance according to the
rewiring rules, i.e. D.

5 Evaluation

In order to evaluate the behavior of the algorithm and the quality of the results,
different initial network topologies have been considered; for each case, 1280
iterations have been executed (an iteration represents a complete migration of
the whole ant population). Complete tests up to 15000 iterations have not shown
significant improvements or changes in the solution. The considered scenarios
included a path graph of 1024 nodes, a 2D grid of size 32x32, a hypercube of
1024 nodes, and a LAN of 1281 nodes 2.

To ensure statistical validity of our results, we repeated each simulation run
42 times. Algorithm parameters used during lall runs is shown in Table 1. As
the evaluation took place on reliable networks, the ¢ parameter (ant respawn
interval) was not used, thus ant colonies were created only at the beginning
of each simulation run. Along with results, both maximum standard deviation
Omaz Of all topologies at the 1280%" iteration, and the maximum mean standard
deviation o7, ,. over all iterations are presented.

Convergence The first goal of the algorithm is to minimize the diameter of
the network according to the value of D. As shown in Figure 3, the diameter
converges exponentially in all four considered topologies. All results are below
the upper bound 2D — 1 = 11 with values around D = 6, and 0,4, = 0.32
and o,,, = 1.16. Because of its topology, LAN 1281 takes more iterations:
this phenomenon can be explained by the low connectivity in the original graph,
which requires a longer exploration phase in the initial iterations. It is interesting
to note that the hypercube diameter is also lowered, although being already
below 2D — 1: this behavior is due to overestimated distances resulting from

local information on each node.

Graph Complexity In order to reduce the diameter, the algorithm should
only add the necessary number of logical links, without creating a clique. For
this purpose, we measured the number of edges in the resulting graph (Figure
4). The number of edges grows up until the diameter reaches the 2D — 1 limit;
at this point, the number of new edges decreases and the graph becomes stable.

Mean Node Degree and Variance Another parameter that has been mea-
sured is the distribution of the number of connections for each node. If the
algorithm creates large hubs the overall fault tolerance is lowered, and a single
node failure can compromise the whole network. Additionally, hubs concentrate
communication and computational loads on a small number of nodes, which is

2 https://networkx.lanl.gov/browser/networkx/trunk/doc/examples/lanl.edges
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unoptimal in a completely distributed environment. Figure shows the evolution
of mean degree obtained in each topology, whereas Figure depicts the degree
variance. In our simulations, we obtained the smallest standard deviation of
1.44 with the Hypercube 1024 topology, with an average degree of 12, and a
maximum standard deviation of 3.23 in LAN 1281 with an average degree of
6.93.

Network Load The overall network load is proportional to the number of
ants exchanged by nodes during the execution. The initial population of ants
is determined by the p parameter, which was set to 0.15 in our experiments.
Because the number of nodes is the same for all scenarios (1024 nodes, except
for LAN 1281), the size of the initial colony is roughly the same in all topologies.
As the algorithms starts to create new connections, new ants of the Link and
Unlink species are created, and the population increases. When the optimal
diameter is reached, the population starts to decrease, down to =~ 400 for LAN
1281 and ~ 320 for the other three topologies. Such results are compatible with
the initial difference in the size of the colonies, as the ratio between the size of
the initial and final populations is ~ 2 for all four topologies. As the number of
Discovery ants is constant, half of the final population is composed of Link and
Unlink ants instantiated because of over or under estimations of distances in the
network.

Dynamic Networks Dynamic scenarios involve networks where new nodes can
connect and existing ones quit the system. Even though the BlatAnt algorithm
does not yet implement a mechanism to prevent the partitioning of the network
when a node disconnects or crashes, we conducted some initial tests of its behav-
ior in such situations. The dynamic scenario consisted an initial path topology
of 100 nodes: every 250 iterations a chain of 25 nodes is added to a random node
in the graph, and every 50 iterations a node is removed. In order not to create
a disconnected network, the node being removed is carefully chosen. Figure 6
shows the diameter of the network during the simulation: when a new chain
of nodes is added, the diameter grows, but the algorithm is able to restore a
minimal value after about 100 iterations. Removal of nodes does not seem to
significantly affect the distances in the network. Additional tests would allow us
to fully understand the dynamics of the algorithm in evolving scenarios.

Parameter|D|a max size|a max agely [§ |lv|e L |w |k
Value 6 |20 20 0.9/0.1{15|0.005|00{0.15(10(0.5
Table 1. Simulation Parameters
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6 Conclusion

In this paper we presented BlatAnt, a collaborative and distributed algorithm
inspired by ACO, to bound the diameter of a network without requiring a global
knowledge. Different species of ants wandering on the network collect and prop-
agate the information that is used to create new logical links. Pheromone trails
followed by ants ensure a even coverage of the network, by forcing ants toward
underexploited paths. Preliminary support to detect the departure of adjacent
nodes is also implemented. The two rules used to create and delete links have
been formally proved in a scenario with global knowledge has been shown.

Simulations on different topologies have validated the behavior of the algo-
rithm in a fully distributed environment: the solution converges to an optimal
diameter, and the number of edges in the resulting network is also bounded. Eval-
uation has also determined the average communication cost in term of deployed
ants. Through a simple dynamic scenario, the adaptive nature of the algorithm
was illustrated, showing its ability to control the diameter of an evolving net-
work.
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Initials results are encouraging, and we believe that BlatAnt can be the foun-
dation of other algorithms that can exploit the short diameter property of the
network. Using an a-priori knowledge of the maximum number of hops sepa-
rating any two nodes of the network, it is possible to devise optimized resource
discovery algorithms, or improve load balancing in grid environments.

Nonetheless there are some issues that are still worth further investigation.
The algorithm performed well in the simulated dynamic network, nevertheless a
fault-tolerance mechanism is required. Although trying to increase the clustering
coeflicient may provide some degree of fault-tolerance, a specific recovery method
is needed.

Improvement of the algorithm itself will require a better understanding of the
influence of each parameter on the solution: fine tuning of each parameter will
allow to increase the results and the robustness of the algorithm. In particular,
an evaluation of the arrangement of links would allow us to improve the degree
distribution of the resulting networks.

Finally, it could be interesting to adapt the algorithm to other kind of
network-related optimization problems, such as minimization of roundtrip times,
and in a more general way to network problems using weighted connections.
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A Algorithm Pseudo-Code

This appendix presents the pseudo-code of the algorithm. A detailed description
is provided in Section 4.

Algorithm A.1: DISCOVERYANT(7)

while True
tell(n;)
V—V+ (ﬂi, Ni, timei)
p — uniform()
N — N\ {ng | (ng,*,%) € V}
ifp<w
then m — uniform(N})

i
else m — minGamma(N})

do

migrate(m)

Algorithm A.2: LINKANT(%, j)

if migrate(n;)
then if (o;[n;][distance] >= 2D — 1)

CONNECT(j, 7)
if migrate(n;)
if (aj[n;][distance] >= 2D — 1)
then

then then {CONNECT(i, )

olse {DISCONNECT(], i)
end

Algorithm A.3: UNLINKANT(%, )

if migrate(n;)

Nj — Nj \ {ni}

Vjln <0

if not migrate(n;)
then end

Ni — Ni\{n;}

vilng) =0

then




Algorithm A.4: CONNECT(4, )

if n; & N(n;)
then d V(i) — N(n:) U{n;}
ALPHAUPDATEONCONNECTION(4, §)

Algorithm A.5: DISCONNECT(i, j)

if (n; € N;) A (link from n; to n; is not frozen)
Ni — Ni\{n;}

Biln;] 0

vilng] 0
ALPHAUPDATEONDISCONNECTION(4, §)

then

Algorithm A.6: ALPHAUPDATEONCONNECTION(Z, j)

a;[n;]|distance] 1
a;[n;[neighbors] «— a;[n;|[neighbors] U {n;}
re-estimate distances of nodes related to n;

Algorithm A.7: ALPHAUPDATEONDISCONNECTION(%, j)

a;[n;]|distance] «— D
a;[nj][neighbors] «— a;[n;|[neighbors] \ {n;}

Algorithm A.8: EVALUATECONNECTION(7)

G = (V, E) « graph constructed from «; and N;

for each peV
d — «;[nodel[distance]
do 4 ¢ da(ni;p)
if (d>=2D—1)A(e>=2D —1)A(yp] =0)
then new LinkAnt(p)

17



18

Algorithm A.9: EVALUATEDISCONNECTION (%)

G = (V,E) « graph constructed from «; and N;
G~ G\ {n;}

A {ny, | azlng] # 0}

N! — N; N A\ {n; € N; | link from n; to n; is frozen}
C—{}

for each p € N]
do for each q € N;
do [ if (d < D) A (i > maz{p,...,q})
then C — C U (p,q,d)

sort C' by ascending d

X —{}
for each (p,q,d) € C
(p ¢ X)
do then {new UnlinkAnt(p)
X = XU{pdq}
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