
Melda: A General Purpose Delta State JSON CRDT
Amos Brocco

University of Applied Sciences and Arts of Southern Switzerland

Lugano, Switzerland

amos.brocco@supsi.ch

Abstract
In this paper we present a delta state conflict-free replicated

data type for arbitrary JSON documents called Melda, which

aims at enabling the implementation of offline-first asynchro-

nous collaboration into applications. The proposed frame-

work does not rely on a coordination service, and supports

different types of decentralized storage solutions to tackle

the problem of ensuring security, privacy and data portability

in the context of collaborative document editing applications.

We present our solution both through a formal description of

the replicated data type and through some implementation

details; moreover we provide an evaluation of the algorith-

mic complexity, and by means of a synthetic benchmark we

analyze the metadata overhead, the actual performance, and

the scalability of our approach.

ACM Reference Format:
Amos Brocco. 2022. Melda: A General Purpose Delta State JSON

CRDT. In Proceedings of ACMConference (Conference’17).ACM, New

York, NY, USA, 7 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Collaborative document editing applications enable their

users to work jointly on a common task by sharing and coor-

dinating concurrentmodifications. Collaboration can happen

either in real-time (simultaneous editing) or asynchronously

(modifications can be independently made offline and each

resulting version is later merged into each other). We con-

sider the latter approach of particular interest, because it is

suitable for creating offline-first (or local-first) applications

[8] that can operate even without network connectivity. The

development and deployement of such software requires

nonetheless both a communication technology and a data

synchronization mechanism for exchanging and integrating

modifications. The majority of the existing solutions rely on

centralized services in the cloud, which implement not only

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

the necessary coordination logic but also process and store

user’s data, thus creating single points of failure and rising

safety and privacy concerns. In particular, collaborative ap-

plications typically force the user to surrender private data

to a third party, trust its actions, and understand and accept

the risks involved. To overcome these issues, in recent years

there has been a constant push toward the development

of decentralized solutions which aim at ensuring security,

privacy and data portability. In the context of collaborative

document editing, we ought to develop a solution based on

serverless coordination and decentralized storage. To get

rid of coordination services, we can turn our attention to

conflict-free replicated data types. Conflict-free replicated

data types (CRDTs) [9, 14] are data structures tailored for

distributed computing which are meant to achieve strong

eventual consistency. CRDTs allow each replica to be inde-

pendently and concurrently updated, without the need for

explicit coordination. By exchanging update information

in the form of operation sequences [2, 7], serialized states

[14] or delta updates [1], the logic behind CRDTs ensures

that each replica eventually converges to a common state

[14]. The development of collaborative applications is a pri-

mary use-case for such data structures. CRDTs also support

the vision of a fully decentralized web, allowing people and

applications to work together on their data by exploiting

different types of communication channels as they see fit,

and by leveraging private data storage facilities.

In this paper we present Melda
1
, an open source JSON

CRDT framework for the implementation of collaboration

features into applications. Melda supports different data stor-

age and exchange backends, which allows for combinining

the advantages of CRDTs with the flexibility and safety of

decentralized storage and peer-to-peer communication (both

asynchronous and synchronous). This work extends [4] and

[3] with improvements to the data structure, a formal descrip-

tion of the CRDT itself, a complexity analysis, and additional

evaluation and comparison.

2 Related work
There exist different types of conflict-free replicated data

types (CRDTs), ranging from simple types such as counters,

registers, and sets [14], to more complex data structures

[7, 11]. As explained in [12], CRDTs imply two fundamental

properties: first, any replica should be modifiable with nei-

ther centralized nor distributed coordination, second, when

1https://github.com/slashdotted/libmelda

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/slashdotted/libmelda

Conference’17, July 2017, Washington, DC, USA Amos Brocco

any two replicas receive the same set of updates they must

reach (converge to) the same state (which leads to strong

eventual consistency). CRDTs can be grouped into three dif-

ferent categories, namely operation-based, state-based and

delta state based. Operation-based solutions [2] rely on up-

date operations which are propagated to all replicas, and

are best suited for high-frequency updates, such as in the

context of real-time collaborative text editors. In the litera-

ture it is possible to find examples of operation-based CRDTs

which support JSON-like data, for instance Yjs [11] or the

Automerge [7] library. In particular, Automerge is aimed at

building collaborative applications in JavaScript, and beside

JSON it provides support for other CRDT types, such as coun-

ters or text buffers. As pointed out in [1], operation-based

CRDTs have several advantages in the realm of real-time

collaborative applications, as they can allow for simpler im-

plementations and smaller replica update messages; however,

they rely on reliable exactly-once causal broadcast of these

updates [2]. On the other hand, state-based CRDTs [14] al-

ways store the full state of the data, and are therefore better

suited for situations where updates are less frequent, com-

munication is unreliable, or operations are not commutative.

With state-based replication it is also easier to verify the

correctness of the data in a particular point in time. The

main drawback of state-based CRDTs is that the size of the

state can become very large [1], consequently delta state so-

lutions (referred to as 𝛿-CRDTs) have been proposed [1, 13].

𝛿-CRDTs rely on disseminating small updates (changesets)

called delta mutations: these updates are idempotent, which

means that they can be applied possibly several times to an

existing state without compromising its consistency, and can

be disseminated over unreliable communication channels.

Recognizing the merits of these approaches with respect

to asynchronous collaboration tools, the CRDT presented

in this paper relies on delta states. In contrast to other ap-

proaches,Melda is not limited to linear sequences of elements

(such as [5]) or simple data structures (as in [14]), but sup-

ports arbitrary JSON documents with complex hierarchies.

3 Overview of the data structure
The purpose of Melda is to achieve eventual consistency by

letting each user work on its own replica while offline, and

exchange the necessary information to update other replicas

whenever possible. In the end, we guarantee that the state

seen by all users will eventually converge, provided that all

modifications generated in the system reach every replica.

To prove our point, we will present the key elements of our

data structure, and demonstrate convergence by framing

them into a formal definition of both a state-based and a

delta state CRDT.

3.1 Definitions
We consider a grow-only collection𝐶 of JSON objects, which

is replicated on multiple sites and concurrently updated by

each participant. Objects are atomic and immutable: even

partial modifications replace the full content with a new

version of the object, which is appended to the existing col-

lection. Deletions are recorded using tombstones (a special
value which represent the final version of an object).

Object. An object 𝑜 is a data structure comprising zero

or more name-value pairs as defined in RFC 8259
2
. Names

must be character strings, and values can be any valid JSON

data type. In the considered framework, each object must

be uniquely identified by a string value 𝑖𝑑𝑜 . The value 𝑖𝑑𝑜
is independent from the content of the object, therefore it

is possible to update an object to a new version 𝑜 ′ without
changing its identifier, i.e 𝑖𝑑𝑜 = 𝑖𝑑𝑜 ′ .

Content digest. To efficiently compare different versions

of an object, the content 𝑥 is hashed to produce a string digest

𝐻 (𝑥). The hashing algorithm is implementation-specific, but

we assume that the digest can be represented as a string using

a binary-to-text encoding such as hexadecimal or 𝐵𝑎𝑠𝑒64

encodings. The identifier of the object, referred to as 𝑖𝑑𝑥 , is

omitted from the hash computation, therefore two versions

𝑥𝑚 and 𝑦𝑛 of two objects 𝑥 and 𝑦 with the same content can

have the same digest, i.e. 𝐻 (𝑥𝑚) ≡ 𝐻 (𝑦𝑛).

Object map. On each replica, the set𝑂 of tuples ⟨𝐻 (𝑥), 𝑥⟩
stores the content of each version of each object. The set 𝑂

is referred to as the object map, and is used to retrieve the

value associated with a specific digest.

Revision string. Let 𝑥𝑁 represent the content of the 𝑁 -th

version of an object identified by 𝑖𝑑𝑥 . The revision string 𝑟𝑁
associated with 𝑥𝑁 is defined as 𝑁 -𝐻 (𝑥𝑁)_𝑇𝑎𝑖𝑙𝑁 , where 𝑁
is a monotonically increasing numerical index (starting at

1), 𝑇𝑎𝑖𝑙0 = ∅, 𝑇𝑎𝑖𝑙𝑁 = 𝑇 (𝐻 (𝑟𝑁−1)), and 𝑇 is a determistic

function (such as the identity function, a hashing function

or a simple string transformation). A revision string 𝑟𝑘 uni-

vocally refers to a specific version 𝑥𝑘 in the history of an

object, and allows for retrieving the corresponding content

from the object map using the embedded digest string 𝐻 (𝑥𝑘).

Revision trees. Modifications made to an object can be

recorded as sequences of revision strings. Due to concurrent

modifications (which are expected to happen on different

replicas), multiple sequences might exist for the same object.

For example, while a replica might produce modifications

which translate into a sequence 𝑟1, 𝑟2 . . . 𝑟𝑁−1, 𝑟𝑁 , changes
made on another replica might result in 𝑟1, 𝑟2 . . . 𝑟𝑁−1, 𝑟 ′𝑁 (the

last revision string differs). To account for this nonlinearity,

the history of modifications made to each object 𝑜 across all

replicas is recorded into a revision tree 𝑟𝑡𝑜 , and is stored as

2
The JavaScript Object Notation (JSON) Data Interchange Format

https://datatracker.ietf.org/doc/html/rfc8259

https://datatracker.ietf.org/doc/html/rfc8259

Melda: A General Purpose Delta State JSON CRDT Conference’17, July 2017, Washington, DC, USA

a collection of tuples ⟨𝑟𝑁 , 𝑟𝑁−1⟩ (𝑟𝑁−1 is referred to as the

parent of 𝑟𝑁 , whereas 𝑟𝑁 is the successor of 𝑟𝑁−1). A revision

tree for a newly created object is stored as ⟨𝑟1, ∅⟩.

Figure 1. Revision tree and conflicting leaf revisions (de-

noted with a blue background).

Leaf revisions. Revisions that have no successors in the

tree are called leafs. If a revision tree exhibits only one leaf

revision, the corresponding object has no conflicts. On the

contrary, concurrent modifications can lead to the existence

of multiple leafs inside a revision tree. Generally speaking, if

two leaf revisions share a common ancestor they are consid-

ered as in conflict. As illustrated in Figure 1, revisions 4-aa,
3-ab, and 4-b are conflicting leaf revisions of the considered

revision tree. Conflicting leaf revisions can be marked as

resolved (using a special type of tombstone value), so as to

ignore them in subsequent operations.

Winning revision. The leaf revision with the highest

numerical index is considered the winning revision 𝑟𝑊 , and

determines the content that shall be returned when querying

for the latest version of an object (i.e. the longest edit branch

wins, as in CouchDB [6]). If multiple revisions share the same

index, revision strings are compared in lexicographic sort

order, and the highest one is deterministically chosen as the

winner. In the example shown in Figure 1, both 4-aa and 4-b
share the same numerical index 4, but 4-b can still be elected

as the lone winner using lexicographic comparison. From

the application’s point of view, the choice of the winning

revision is arbitrary; however, because all revisions are kept

in the CRDT, it is always possible to elect a different revision

as a new winner. In the previous example, the revision tree

could be extended with a new tuple ⟨4 − 𝑏, 5 − 𝑎𝑏⟩ to obtain

a new winner referencing the same content as revision 3-ab.

State set. Given a replica of a collection of JSON objects

𝐶 , we define its state set (or simply state) 𝑋 = 𝐷 ∪𝑂 , where

𝐷 =
⋃

𝑜∈𝐶 𝑟𝑡𝑜 , and 𝑂 is the object map as defined above.

3.2 Mapping onto a state-based CRDT
As defined in [1], a state-based CRDT consists of a triple

(𝑆,𝑀,𝑄), where 𝑆 is a join-semilattice (a set with partial

order ⊑ and a binary join operation ⊔which returns the least
upper bound of two elements in 𝑆 while being commutative,

associative, and idempotent), 𝑀 is a set of mutators that

update a state 𝑋 ∈ 𝑆 to produce a new state 𝑋 ′ =𝑚(𝑋) such
that ∀𝑚 ∈ 𝑀,𝑋 ∈ 𝑆 : 𝑋 ⊑ 𝑚(𝑋) ∧𝑚(𝑥) ∈ 𝑆 , and 𝑄 is a set

of query functions (for reading the data).

In Melda, partial ordering can be obtained by means of the

subset ⊑ relation. The join operation ⊔ corresponds to the

union between two sets. By its very nature, the union fulfills

the requirement of being commutative, associative, and idem-

potent. Since ∀𝐴, 𝐵 ∈ 𝑆 , 𝐴 ⊔ 𝐵 ∈ 𝑆 , and 𝐴 ⊔ 𝐵 := 𝑠𝑢𝑝{𝐴, 𝐵},
we have a least upper bound (or supremum), making 𝑆 a

join-semilattice. Concerning mutators, we observe that any

modification translates into adding one or more tuples to

the state set. A single update of state 𝑋 ∈ 𝑆 can thus be

formalized as 𝑋 ′ = 𝑋 ∪ {⟨𝑟𝑖 , 𝑟𝑖−1⟩}, where 𝑋 ′ ∈ 𝑆 is the

resulting state. Mutators are therefore inflations [1], and the

requirement 𝑋 ⊑𝑚(𝑋) holds ∀𝑚 ∈ 𝑀,𝑋 ∈ 𝑆 .
Given the associativity, commutativity, and idempotence

of the join operation the requirements for convergence (as

stated in [1]) are fulfilled. Also, our CRDT is isomorphic to a

G-Set (Grow-only Set [14]).

3.3 Mapping onto a delta state CRDT
Propagating the full state in order to update all replicas is

an expensive operation. In this regard, 𝛿-CRDTs exchange

deltas (fine-grained states), which are comparatively smaller

than full-states, but still ensure convergence as with state-

based CRDTs. According to [1], a 𝛿-CRDT consists of a triple

(𝑆,𝑀𝛿 , 𝑄), where 𝑆 is a join-semilattice of states, 𝑀𝛿
is a

set of delta-mutators, and 𝑄 is a set of query functions. The

state transition at each replica is given by either joining the

current state 𝑋 ∈ 𝑆 with a delta-mutation (𝑋 ′ = 𝑋 ⊔𝑚𝛿 (𝑋)),
or by joining the current state with some received delta-

group 𝐷 (𝑋 ′ = 𝑋 ⊔ 𝐷). Delta-mutators are defined as func-

tions, corresponding to an update operation, which take a

state 𝑋 in a join-semilattice 𝑆 as parameter and return a

delta-mutation𝑚𝛿 (𝑋) ∈ 𝑆 . Finally, a delta-group is induc-

tively defined as either a delta-mutation or a join of sev-

eral delta-groups. In the considered scenario, each transition

from state 𝑋 to state 𝑋 ′ can be represented by an update set
𝑈 = 𝑋 ′ \ 𝑋 , with 𝑈 ∈ 𝑆 , since 𝑆 is closed under set differ-

ence. Update sets are equivalent to delta-mutations, since

𝑋 ′ = 𝑚(𝑋) = 𝑋 ⊔𝑚𝛿 (𝑋) = 𝑋 ⊔ 𝑈 , where 𝑋,𝑋 ′ ∈ 𝑆 and

𝑚𝛿 (𝑋) ∈ 𝑆 is the delta mutation. Delta-mutators𝑚𝛿 are de-

fined by the relation𝑚𝛿 (𝑋) = 𝑈 . Furthermore, update sets

also translate into delta-groups 𝐷 , as the relation𝑋 ′ = 𝑋 ⊔𝐷
holds when 𝐷 = 𝑚𝛿 (𝑋), and by associativity this relation

is verified even when considering a join of several delta-

groups. Since the join operation is associative, commutative

and idempotent, the requirements for convergence (as stated

in [1]) are fulfilled. It is therefore possible to introduce the

following definition:

Delta state. : ∀𝑋,𝑋 ′ ∈ 𝑆 , Δ𝑋 ′,𝑋 = 𝑋 ′ \ 𝑋 is called a delta
state. Δ𝑋 ′,𝑋 ∈ 𝑆 and 𝑋 ′ = 𝑋 ∪ Δ𝑋 ′,𝑋 . Any state 𝑋 ∈ 𝑆 can

be decomposed into an arbitrary number 𝑁 ∈ N>0 of delta

states Δ𝑖 ∈ 𝑆, 𝑖 ∈ N>0, such that 𝑋 = ∪𝑖=1
𝑁

Δ𝑖 .

Conference’17, July 2017, Washington, DC, USA Amos Brocco

4 Implementation
Melda is not intended as a replacement for the application’s

data model, but as a complement to the existing one. The

latter might comprise hierarchies of objects whose changes

are difficult to track individually. To update the CRDT, Melda

processes a JSON serialization of the application’s datamodel,

decomposes it into a collection of objects, and determines

changes by comparing those objects against the state set. In

the following, some implementation details will be discussed.

Updating the CRDT. Using a reversible transformation

algorithm derived from [5], the JSON document representing

the data model is recursively flattened to move nested ob-

jects into an associative array 𝐶 (Algorithm 1). Each moved

object is replaced by a unique string reference generated by

the MakeIdentifier function: this reference depends either

on the value of an _id field, or the path of the object inside

the document; all other strings are escaped (using an Escape

function). The resulting object is marked as the root. After-
wards, all the objects in 𝐶 are compared against the current

state: changes produce new revision tuples, whereas new

values are stored into the object map. To minimize the space

taken by large arrays, a difference algorithm can be used to

create patches against previous revisions. To reconstruct the

document from the state set, references in the root object are
recursively replaced by the value of the winning revision.

Non-destructive array merging. Several applications
that deal with structured data, such as rich text editors, collec-

tion management systems or financial accounting software,

are built around arrays of objects. Since Melda only updates

objects as a whole, concurrent updates made to such arrays

(in particular additions) might not persist, unless special at-

tention is devoted to conflicting revisions. As an example, we

consider concurrent modifications that add a new element

to an array [𝐴, 𝐵,𝐶], which we assume being part of a JSON

object, where the letters A, B, and C each represent another

object. On a replica 𝑅1, a new element D is appended at the

end of the array (leading to [𝐴, 𝐵,𝐶,D]), whereas on replica

𝑅2 a new element E is inserted between A and B (resulting

in [𝐴,E, 𝐵,𝐶]). These updates produce two conflicting re-

visions: upon merging, only one of those revisions will be

deterministically chosen as the winner. Therefore, the value
of the array might either be [𝐴, 𝐵,𝐶,D] or [𝐴,E, 𝐵,𝐶]. To
retain both additions, during the reconstruction process con-

flicting arrays are combined using Algorithm 2, in order to

produce amerged view. The algorithmmerges an array 𝑆 into

an array 𝑇 . The IndexOf(𝐴, 𝑒) function returns the position

of an element 𝑒 inside an array𝐴, whereas the Insert(𝐴, 𝑖, 𝑒)
procedure inserts an element 𝑒 into an array 𝐴 at a specific

position 𝑖 . The first element 𝑒 in the source array 𝑆 which

is also found in the target array 𝑇 is called pivot: all other
elements from 𝑆 which are not yet in 𝑇 are inserted rela-

tive to this element. In the previous example, the merging

procedure with 𝑆 := [𝐴, 𝐵,𝐶, 𝐷] and 𝑇 := [𝐴, 𝐸, 𝐵,𝐶] results
in 𝑇 = [𝐴,E, 𝐵,𝐶,D], which retains both 𝐸 and 𝐷 . As the

array merging procedure only concerns the data returned

to the client application, no persistent changes are made to

the state. If conflicting arrays contain the same elements in

a different order, the merged view retains the order from the

𝑇 array. Deletions are handled by excluding objects whose

winning revision is a tombstone.

Algorithm 1 Flattening Procedure

𝐶 := {} ⊲ Associative array of extracted objects

procedure Flatten(𝑣𝑎𝑙𝑢𝑒 , 𝑝𝑎𝑡ℎ := [])

switch type of 𝑣𝑎𝑙𝑢𝑒 do
case 𝑆𝑡𝑟𝑖𝑛𝑔

return Escape(𝑣𝑎𝑙𝑢𝑒)

case 𝐴𝑟𝑟𝑎𝑦
𝑎♭ := [] ⊲ Flattened array

for each 𝑣 ∈ 𝑣𝑎𝑙𝑢𝑒 do
𝑎♭← 𝑎♭ ∪ Flatten(𝑣 , 𝑝𝑎𝑡ℎ)

end for
return 𝑎♭

case 𝑂𝑏 𝑗𝑒𝑐𝑡
𝑜♭ := {} ⊲ Flattened object

𝑖𝑑𝑜♭ :=MakeIdentifier(𝑣𝑎𝑙𝑢𝑒 , 𝑝𝑎𝑡ℎ)

for each [𝑘, 𝑣] ∈ 𝑣𝑎𝑙𝑢𝑒 do
𝑜♭[𝑘] ←Flatten(𝑣 ,𝑝𝑎𝑡ℎ ∪ [𝑖𝑑𝑜♭, 𝑘])

end for
𝐶 [𝑖𝑑𝑜♭] ← 𝑜♭

return 𝑖𝑑𝑜♭

default return 𝑣𝑎𝑙𝑢𝑒

end procedure

4.1 Delta state serialization
Changes recorded during an update are stored into a tempo-

rary in-memory delta state. Upon commit, this delta state is

serialized into two JSON structures, namely a delta block and
a data pack. The former stores revision tree updates, whereas

the latter stores values from the object map. Both structures

are immutable and uniquely identified by the hash value of

their content, hence they can be cached locally to reduce

transmission costs. This separation removes the space over-

head for objects that do not change or objects that share the

same content. Moreover, objects which are found in existing

packs are excluded from the newly created packs. To cope

with the possibility that a data pack hasn’t yet been delivered
to a replica, we redefine winning revision as the one with

the highest numerical index and the highest lexicographical

value whose content is available on that replica. Delta blocks
and data packs are stored or exchanged between peers using

adapters, which currently support a variety of storage and

communication backends, namely main memory (for tem-

porary data structures), local or shared filesystems (using

Melda: A General Purpose Delta State JSON CRDT Conference’17, July 2017, Washington, DC, USA

Algorithm 2 Array Merging Procedure

procedureMergeArrays(𝑆,𝑇)

𝜄 := 0

𝜋 := 0

for each 𝑒 ∈ 𝑆 do
if 𝑒 ∈ 𝑇 then

𝜄 ← IndexOf(𝑇, 𝑒)
𝑏𝑟𝑒𝑎𝑘

else
𝜋 ← 𝑝𝑖 + 1

end if
end for
𝜏 := 0

for each 𝑒 ∈ 𝑆 do
if 𝑒 ∈ 𝑇 then

𝜄 ← IndexOf(𝑇, 𝑒)
else

if 𝜏 < 𝜋 then
Insert(𝑇, 𝜄, 𝑒)
𝜋 ← 𝜏

else
𝜄 ← 𝜄 + 1
Insert(𝑇, 𝜄, 𝑒)

end if
end if
𝜏 ← 𝑡 + 1

end for
end procedure

either uncompressed JSON files or DEFLATE
3
compressed

JSON files), and Solid pods [15].

Delta blocks. When data is modified, revision trees are

extended and new tuples are added to the state set. These

changes are encoded inside records which are grouped into

delta blocks. Two types of records are considered: creation
records and modification records. A creation record contains

two fields, {𝑖𝑑𝑥 , 𝐻 (𝑥1)}, where 𝑖𝑑𝑥 is the UUID of a newly

created object 𝑥 , and 𝑥1 is the content of the first version of 𝑥 :

these values can be used to compute a revision string 𝑟 𝑖𝑑
1

and

produce the first revision tuple for that object, i.e. ⟨𝑟1, ∅⟩. A
modification record contains three fields {𝑖𝑑𝑥 , 𝑟𝑁−1, 𝐻 (𝑥𝑁)},
where 𝑖𝑑𝑥 is the UUID of the modified object 𝑥 , 𝑟𝑁−1 is the
revision upon which the modification is made, and 𝐻 (𝑥𝑁)
is the hash of the updated version of 𝑥 . These values are

used to compute a new revision string of the object 𝑟 𝑖𝑑
𝑁

and

the corresponding tuple ⟨𝑟𝑁 , 𝑟𝑁−1⟩. The application might

perform multiple updates before committing to a block.

Data packs and indices. Object maps are stored in the

form of data packs, which are identified by the hash value of

their content. While not strictly necessary for the operation

3https://datatracker.ietf.org/doc/html/rfc1951

of the CRDT, to efficiently enumerate and read the objects

contained in a large packs, a corresponding index can also be

generated: indices map the digest of an object to a position

inside the pack. If not present, an index can be rebuilt from

the corresponding data pack at any time.

4.2 API
The functionalities of the underlying CRDT are exposed

through a high-level API. The most important methods are:

Reload Delta blocks are read (in any order) from the back-

end adapter and the current state (namely, revision trees) is

reconstructed.

Update An input JSON document is transformed into

a collection of objects (using Algorithm 1) which are then

compared against the current state. Differences result in

new revisions (added to the revision trees of the concerned

objects) and new values (added to the object map).

Commit A new delta state, comprising a delta block and

possibly a data pack, is pushed to the backend adapter.

Read The actual content of each object (as determined by

its winning revision) is read from the relevant data packs and,
starting from the root object, the original JSON document is

reconstructed and returned to the application.

Meld Melding is our trivial replication logic which in-

volves copying missing elements (delta blocks, data packs
and indices) from a source replica to a target, resulting in the

union between these two states.

Additional methods are exposed to allow access to previ-

ous revisions of an object or to override the winning revision.

5 Evaluation
We first present a complexity analysis of the algorithms in-

volved in the reload (i.e. state reconstruction), update, read,

and meld procedures. Next, a synthetic benchmark to de-

termine the space overhead in comparison to Automerge

[7] will be presented. Automerge was chosen because it is

a popular and well documented CRDT framework. Finally,

the scalability of Melda with respect to the number of delta

states will be discussed.

5.1 Algorithmic complexity
Prior to any other operation, the state of the CRDT must

be reconstructed. This operation involves reading all delta

states (more specifically, delta blocks), in order to replay all

the creation and modification records. As a whole, this step

has an average complexity of𝑂 (𝑛 ·𝑚), where 𝑛 is the number

of delta blocks and𝑚 is the average size of such blocks. Since

revision data is kept into memory, the minimum amount of

the space required while working with the CRDT is propor-

tional to the number𝑚 of objects and the average number 𝑟

of revisions for each object, therefore the space complexity

is𝑂 (𝑚 · 𝑟). It should be noted that the actual complexity also

depends on the backend adapter: for simplicity, we assume

https://datatracker.ietf.org/doc/html/rfc1951

Conference’17, July 2017, Washington, DC, USA Amos Brocco

that both the space and the time complexity of the opera-

tions performed by an adapter are 𝑂 (1). Updates involve
multiple steps: parsing the input JSON document into a col-

lection of JSON objects and determining the corresponding

edit (mainly by comparing the hash value of their content).

Parsing the JSON file has a time and space complexity pro-

portional to the size of the input file, that is𝑂 (𝑛), where 𝑛 is

the size of the input. Converting the document into a collec-

tion of JSON objects performs a depth-first traversal of the

input structure, and has therefore a complexity 𝑂 (𝑛), where
𝑛 is the number of nested objects contained in the input doc-

ument. Finally, processing all the 𝑛 objects and computing

their hash value has a time-complexity 𝑂 (𝑛 ·𝑚), where𝑚
is the size of the object. Inserting a value in the object map,

as well as retrieving the revision tree of an object are both

assumed to be𝑂 (𝑙𝑜𝑔𝑛) operations (where 𝑛 is the number of

objects in the data structure), whereas querying or updating

revision trees of a particular object is expected to perform

with a time-complexity of𝑂 (𝑙𝑜𝑔𝑟), where 𝑟 is the number of

revisions for that object. If deltas are used to optimize array

modifications, a difference algorithm would need to be exe-

cuted. If an algorithm such as [10] is employed, for each array

an additional time-complexity of𝑂 (𝑛 ·𝑑) must be accounted

for, where𝑛 is the sum of the lengths of the considered arrays

and 𝑑 is the size of the minimum edit script. Conversely, a

patching algorithm to apply an edit script would be needed

when reading the data, adding a complexity proportional

to the size of the edit script. Committing has a complexity

proportional to the number of revision tuples and the objects

that are sent to the adapter. Reading the data structure in-

volves determining the winning revision for each object and

subsequently reconstructing the document. We assume that

access to the revision tree of an object is𝑂 (𝑙𝑜𝑔𝑛) (where 𝑛 is

the total number of objects), and that determining the win-

ning revision is 𝑂 (𝑙𝑜𝑔𝑟), where 𝑟 is the number of revisions

for that object. Reconstructing the original structure of the

document has a time and space complexity 𝑂 (𝑛), where 𝑛
is the number of string references that need to be replaced

by objects. Melding merges the contents (delta blocks, data

packs, and indices) of two replicas 𝑅1 and 𝑅2. Let 𝑛 be the

number of items in 𝑅1, and𝑚 the number of items in 𝑅2. If ac-

cessing the items within each replica has a time-complexity

𝑂 (𝑙𝑜𝑔𝑛) (where 𝑛 is the number of objects in the replica),

determining the items which are in 𝑅1 but not in 𝑅2 has a

time-complexity 𝑂 (𝑛 · 𝑙𝑜𝑔𝑚).

5.2 Synthetic benchmark
Although Melda is aimed at collaborative applications which

deal with arbitrary JSON documents, simple text editing

is perhaps one of the most common and well understood

use cases for CRDTs. We therefore consider a benchmark

based on an editing trace
4
of a large text document with

4https://github.com/automerge/automerge-perf

Batch Changesets (MBytes) / Creation time / Read time

size Am.Text() Am Melda

10 4.1/73s/45s 11/13.5h/2h 22/2.3h/225s

100 0.72/21s/15s 5.3/12.5h/14h50m 11/12m/24s

1 000 0.24/15s/11s 4.7/12h/14h25m 9/110s/6s

10 000 0.17/19s/11s 4.3/12h/14h17m 7.5/35s/12s

Table 1. Results after 259 778 edit operations (Am for Au-

tomerge).Creation time is the time required to produce all

the changesets, whereas Read time considers reloading and
replaying the changesets and producing a text document.

182 315 single-character insertion operations, and 77 463

single-character deletion operations. These edits result in a fi-

nal text document of 104 852 ASCII characters. Melda is eval-

uated through a Rust program which maintains a JSON docu-

ment containing an array of objects (one for each character):

each character is serialized as {"#":"ord","_id":"uuid"}",
where ord is the hexadecimal Unicode code of the character

and uuid is a unique identifier (UUID v4, 32 hexadecimal

digits). Delta states and packs are stored in the compressed

format on the local filesystem. The benchmarking program

for Automerge is based on version 1.0.1-preview.6 (which

uses binary changesets): to represent our document we con-

sider both Automerge.Text(), as well as an array of objects

(one for each character, as with Melda). In the latter case,

our goal is to determine the overhead of the CRDT with

more complex JSON documents. With Automerge we record

edits using the insertAt and deleteAt methods. To simulate

asynchronous collaboration, the editing process is divided

into batches of 10, 100, 1 000, and 10 000 single-character

operations: when a batch is completed, a changeset is gen-
erated. With Automerge we consider the value produced

by the getChanges function, whereas with Melda we con-

sider delta states (blocks, packs, and indices). In both cases it

is possible to reconstruct the final version of the text doc-

ument by replaying all these changesets (whereas Melda

takes care of reloading all the delta states when the data

structure is initialized, with Automerge it is necessary to

call 𝑎𝑝𝑝𝑙𝑦𝐶ℎ𝑎𝑛𝑔𝑒𝑠 for each changeset). The cumulative size

of all changesets is closely related to the overall communi-

cation overhead, as modifications are typically propagated

over a network. All tests were performed on a Linux machine

(Ubuntu 18.04.5 LTS) with an Intel
®
Xeon

®
Gold 6142 CPU

clocked at 2.60GHz, with a hard limit of 4 cores and 8GB of

memory. For Automerge we employed Node v16.13.2.

Metadata overhead. As shown in Table 1, the smallest

changesets were produced by Automerge.Text(), as it is op-
timized for collaborative text editing. In comparison, when

storing arbitrary objects the space overhead incurred by

Automerge increases significantly. Melda produces a larger

overhead than Automerge, although the size is only two

https://github.com/automerge/automerge-perf

Melda: A General Purpose Delta State JSON CRDT Conference’17, July 2017, Washington, DC, USA

times bigger than Automerge when storing an array of ob-

jects. For comparison, the cumulative size of all versions of

the document with batches of 10,100,1 000 and 10 000, opera-

tions is 1.7GB, 170MB, 17MB and 1.7MB respectively: all the

considered CRDTs are more efficient in almost all scenarios.

Build time and read time. The best build and read times

were achieved using Automerge.Text(). When dealing with

an array of objects, Automerge is the slowest one, requir-

ing several hours both to create changesets, as well as to

reload them in order to read the document. Melda takes

more time than 𝐴𝑢𝑡𝑜𝑚𝑒𝑟𝑔𝑒.𝑇𝑒𝑥𝑡 () at creating changesets

and reconstructing the text document, but is considerably

more performant than 𝐴𝑢𝑡𝑜𝑚𝑒𝑟𝑔𝑒 at dealing with an array

of objects. Surprisingly, Melda took less time to read data in

the 1 000 operations scenario than in the 10 000 one.

Figure 2. Scalability results (batch of 10 operations).

Scalability. To evaluate the scalability of our approach

we consider the time required to commit a batch of changes,

reload all the changesets after each commit, and to update

the state with the next batch of edits. The total memory

consumed after each commit was measured as well. The

results, shown in Figure 2, correspond to the scenario with

a batch size of 10 operations (with a total of 25 978 delta

states). The resident set size (RSS) takes into account not only

the memory used by the CRDT but also the application’s

data model. As expected, the commit time remains almost

constant throughout the scenario (since the batch size is

fixed). All other considered values grow at most linearly

with respect to the number of recorded operations and the

size of the state, matching our complexity analysis.

6 Conclusions
In this paper, we presented Melda, a JSON 𝛿-CRDT solu-

tion to support the development of multi-user applications

based on asynchronous collaboration. The underlying CRDT

and its logic were formally presented and some implemen-

tation details were discussed. An evaluation was conducted

through a synthetic benchmark. Future work includes per-

formance and overhead optimizations, investigation into

pruning mechanisms, better documentation, the implemen-

tation of additional adapters, and porting the library to other

programming languages and frameworks.

Acknowledgments. This work has been financially sup-

ported by the Swiss Innovation Agency, Project nr. 42832.1

IP-ICT and by Banana.ch SA.

References
[1] Almeida, P. S., Shoker, A., and Baqero, C. Delta state replicated

data types. Journal of Parallel and Distributed Computing 111 (2018),
162–173.

[2] Baqero, C., Almeida, P. S., and Shoker, A. Making Operation-

Based CRDTs Operation-Based. In Proceedings of the First Workshop
on Principles and Practice of Eventual Consistency (New York, NY, USA,

2014), PaPEC ’14, Association for Computing Machinery.

[3] Brocco, A. Delta-State JSON CRDT: Putting Collaboration on Solid

Ground. In Stabilization, Safety, and Security of Distributed Sys-
tems - 23rd International Symposium (2021), C. Johnen, E. M. Schiller,

and S. Schmid, Eds., vol. 13046 of Lecture Notes in Computer Science,
Springer, pp. 474–478.

[4] Brocco, A. The Document Chain: a Delta CRDT framework for

arbitrary JSON data. In Proceedings of the 29th Italian Symposium
on Advanced Database Systems, SEBD 2021, Pizzo Calabro (VV), Italy,
September 5-9, 2021 (2021), S. Greco, M. Lenzerini, E. Masciari, and

A. Tagarelli, Eds., vol. 2994 of CEUR Workshop Proceedings, CEUR-
WS.org, pp. 59–70.

[5] Brocco, A., Ceppi, P., and Sinigaglia, L. libJoTS: JSON That Syncs!

In Proceedings of the 28th Italian Symposium on Advanced Database
Systems (2020), M. Agosti, M. Atzori, P. Ciaccia, and L. Tanca, Eds.,

vol. 2646 of CEUR Workshop Proceedings, CEUR-WS.org, pp. 116–127.

[6] CouchDB Team. CouchDB 2.0 reference manual, 2015.

[7] Kleppmann, M., and Beresford, A. R. A Conflict-Free Replicated

JSON Datatype. IEEE Transactions on Parallel and Distributed Systems
28, 10 (2017), 2733–2746.

[8] Kleppmann, M., Wiggins, A., van Hardenberg, P., and Mc-

Granaghan, M. Local-First Software: You Own Your Data, in Spite of

the Cloud. In Proceedings of the 2019 ACM SIGPLAN International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming
and Software (New York, NY, USA, 2019), Onward! 2019, Association

for Computing Machinery, p. 154–178.

[9] Letia, M., Preguiça, N., and Shapiro, M. Consistency without Con-

currency Control in Large, Dynamic Systems. SIGOPS Oper. Syst. Rev.
44, 2 (Apr. 2010), 29–34.

[10] Myers, E. W. An O(ND) Difference Algorithm and Its Variations.

Algorithmica 1 (1986), 251–266.
[11] Nicolaescu, P., Jahns, K., Derntl, M., and Klamma, R. Yjs: A Frame-

work for Near Real-Time P2P Shared Editing on Arbitrary Data Types,

06 2015.

[12] Preguiça, N., Baqero, C., and Shapiro, M. Conflict-Free Replicated
Data Types CRDTs. Springer International Publishing, Cham, 2018,

pp. 1–10.

[13] Rinberg, A., Solomon, T., Khazma, G., Lushi, G., Shlomo, R., and

Ta-Shma, P. Array CRDTs Using Delta-Mutations. In 8th Workshop on
Principles and Practice of Consistency for Distributed Data (Apr. 2021),
PaPoC 2021, ACM.

[14] Shapiro, M., Preguiça, N., Baqero, C., and Zawirski, M. A com-

prehensive study of Convergent and Commutative Replicated Data

Types. Research Report RR-7506, Inria – Centre Paris-Rocquencourt ;

INRIA, Jan. 2011.

[15] Solid Project. Technical Reports. Accessed Mar. 1, 2022, 2022.

	Abstract
	1 Introduction
	2 Related work
	3 Overview of the data structure
	3.1 Definitions
	3.2 Mapping onto a state-based CRDT
	3.3 Mapping onto a delta state CRDT

	4 Implementation
	4.1 Delta state serialization
	4.2 API

	5 Evaluation
	5.1 Algorithmic complexity
	5.2 Synthetic benchmark

	6 Conclusions
	References

