
Brief Announcement: Delta-State JSON CRDT:
Putting Collaboration on Solid Ground

Amos Brocco

University of Applied Sciences and Arts of Southern Switzerland, Lugano,
Switzerland amos.brocco@supsi.ch

Abstract. In this paper we present a framework to support the imple-
mentation of offline-first asynchronous collaboration using a variety of
data storage and communication backends. In particular, our approach
can make use of Solid pods to exchange data between users.

Keywords: Collaborative Applications · JSON · CRDT · Solid

1 Introduction

In this paper we present a framework for the development of collaboration fea-
tures into applications, by combining the advantages of CRDTs [7, 10] with the
flexibility and safety of decentralized storage. As such, our intent is to exploit
Solid pods [1] as a communication channel for exchanging data between users.
However, thanks to the simplicity and modularity of our design, storage solu-
tions such as shared folders or cloud file-sharing platforms, as well as physical
devices like thumb drives, can also serve the same function as a pod. To ease the
integration of our solution, we allow transparent replication of complex JSON
documents without explicit editing. It is therefore possible to implement collab-
orative features into existing programs without altering their data model. The
remaining of this paper presents a brief review of the relevant related work in
the field of CRDTs, a formal overview of our data structure and some details
of its implementation. Finally, an evaluation of the proposed solution and the
corresponding results will be discussed.

2 Related work

CRDTs can be grouped into three different categories, namely operation-based,
state-based and delta-state based. Operation-based solutions [3] rely on update
operations which are propagated to all replicas, and are best suited for high-
frequency updates, such as in the context of real-time collaborative text editors.
In the literature it is possible to find examples of operation-based CRDTs which
support JSON-like data, for instance Yjs [8] or the Automerge [6] library, but
require explicit editing of the document in order to keep track of each modifi-
cation. State-based CRDTs [10] always store the full state of the data, and are



2 A. Brocco

therefore better suited for situations where updates are less frequent, commu-
nication is unreliable, or operations are not commutative. The main drawback
of state-based CRDTs is that the size of the state can become very large [2],
consequently delta-state solutions (referred to as δ-CRDTs) have been proposed
[2, 9]. δ-CRDTs rely on disseminating small updates (changesets) called delta
mutations: these updates are idempotent, which means that they can be applied
possibly several times to an existing state without compromising its consistency,
and can be disseminated over unreliable communication channels. The CRDT
discussed in this paper uses delta states and presents a practical architecture for
collaborative applications with a modular design supporting different types of
communication and storage backends.

3 Overview of the data structure

We consider a generic collection C of JSON objects which is generated from
an arbitrary JSON document using a reversible data transformation algorithm
[5]. In contrast to other solutions, which require explicit editing operations, this
algorithm processes an input document (as produced by an application) to au-
tomatically extract nested objects and determine their changes. This collection
can be replicated on multiple sites and concurrently updated by each partici-
pant. Each object o in this collection is identified by a UUID ido and its value
(or content) can be modified independently on each replica. We assume that
objects are atomic and immutable. The collection is a grow-only data structure,
where deletions are recorded using a tombstone. To efficiently compare different
versions of an object, the content x is hashed to produce a string digest H(x).

Object map On each replica of the data structure, the set O of tuples 〈H(x), x〉
stores the content of each version of each object. The set O is referred to as the
object map, and allows for retrieving the value associated with a specific digest.

Revision string Let xN represent the content of the N -th version of object x. The
revision string rN associated with xN is defined asN -H(xN ) TailN , whereN is a
monotonically increasing numerical index (starting at 1), TailN = T (H(rN−1)),
and T is a determistic function (such as the identity function, a hashing function
or a simple string transformation). A revision string rk univocally refers to a
specific version xk in the history of an object, and allows for retrieving the exact
content through the embedded digest string H(xk).

Revision trees Modifications made to an object can be recorded as sequences of
revision strings. The history of modifications made to each object o across all
replicas is represented by a revision tree rto, which can be conveniently stored
as collection of tuples 〈rN , rN−1〉 (rN−1 being referred to as the parent of rN ).
The revision tree for a newly created object is 〈r1, ∅〉. The revision with the
highest numerical index is considered the winning revision rW , and determines
the contents that shall be returned when querying for the latest version of an



BA: Delta-State JSON CRDT: Putting Collaboration on Solid Ground 3

object. If multiple revisions share the same index, revision strings are compared
in lexicographic sort order.

State set Given a replica of a collection of JSON objects C, we define its state
set (or simply state) X = D ∪O, where D =

⋃
o∈C rto, and O is the object map

as defined above.

3.1 Delta-state decomposition

According to [2], a δ-CRDT consists of a triple (S,Mδ, Q), where S is a join-
semilattice of states, Mδ is a set of delta-mutators, and Q is a set of query func-
tions. The state transition at each replica is given by either joining the current
state X ∈ S with a delta-mutation (X ′ = X tmδ(X)), or by joining the current
state with some received delta-group D (X ′ = X tD ). Delta-mutators are de-
fined as functions, corresponding to an update operation, which take a state X
in a join-semilattice S as parameter and return a delta-mutation mδ(X) ∈ S. Fi-
nally, a delta-group is inductively defined as either a delta-mutation or a join of
several delta-groups. In the considered scenario, each transition from state X to
state X ′ can be represented by an update set U = X ′ \X, with U ∈ S, since S is
closed under set difference. Update sets are equivalent to delta-mutations, since
X ′ = mδ(X) = X tmδ(X) = X t U , where X,X ′ ∈ S and mδ(X) ∈ S is the
delta mutation. Delta-mutators mδ are defined by the relation mδ(X) = X tU .
Furthermore, update sets also translate into delta-groups D, as the relation
X ′ = X tD holds when D = mδ(X), and by associativity this relation is veri-
fied even when considering a join of several delta-groups. Since the join operation
is associative, commutative and idempotent, the requirements for convergence
(as stated in [2]) are fulfilled.

3.2 Delta-state serialization and adapters

The serialization format is derived from the one presented in [4]. Update sets are
serialized into two different JSON structures, namely delta blocks and data packs.
The former stores revision tree updates, whereas the latter maintains the actual
content of each new object. Both structures are immutable, hence they can be
cached locally to reduce network overhead. To cope with the possibility that a
data pack hasn’t yet been delivered to a replica, we redefine winning revision as
the one with the highest numerical index whose content is available. To store
and replicate data on different platforms, the low-level task of reading or writing
the delta blocks and data packs is fulfilled by means of adapters. Adapters can
be used to seamlessly support different types of storage, such as main memory,
filesystems (where delta blocks and packs are files), databases, decentralized data
pods, or cloud sharing platforms (such as Dropbox and Nextcloud).

3.3 Example architecture of a collaborative application

The functionalities of the underlying CRDT are exposed through a high-level
API which implements methods to update, read and synchronize replicas. An



4 A. Brocco

application can make use of these methods to support asynchronous collaborative
editing without reinventing its data model.

Fig. 1. Example architecture of a collaborative application

Figure 1 shows an example architecture with two local replicas and one shared
replica (a simple data store). Each user can work on their data while offline.
Replication is achieved by serializing the contents of the data model into a JSON
document and subsequently update the local replica. By means of the melding
procedure, changes made to the local replica are propagated to the shared replica
through a backend adapter. Afterwards, changes from the shared replica are
melded into the local one, integrating modifications made by other users. Finally,
the local replica can be read and deserialized so as to obtain an updated model.
This workflow can be used to mimic the co-authoring functionality called save
and refresh offered by Microsoft Office.

Solid pod adapter The Solid specification [1] provides a standard for building
an ecosystem of personal web-accessible data pods. Access to a pod is controlled
by the owner, and linked data is exploited to promote interoperability between
applications and pods. In our framework we store delta blocks and data packs
as LDP Resources inside LDP Containers.

4 Evaluation

To evaluate the proposed solution, we consider a synthetic benchmark to deter-
mine the space overhead in comparison to Automerge [6]. We employ an editing
trace1 of a large text document with 182 315 single-character insertion opera-
tions, and 77 463 single-character deletion operations. To simulate asynchronous
collaboration, the editing process is divided into batches of 10, 100, 1 000, and
10 000 single-character operations: when a batch is completed, a changeset is
generated. As shown in Table 1, as the number of edits in each batch increases,
our delta-state CRDT incurs a smaller space overhead compared to Automerge.

1 https://github.com/automerge/automerge-perf



BA: Delta-State JSON CRDT: Putting Collaboration on Solid Ground 5

Batch size Batches
Cumulative size of the changesets (MBytes)

Automerge Delta-State JSON CRDT Full-states

10 ops 25 978 56.5 86 1 699.8

100 ops 2 598 54 23.7 170

1 000 ops 260 52.8 16.5 17

10 000 ops 26 51.5 15 1.7

Table 1. Results of the synthetic benchmark after 259 778 edit operations

5 Conclusion

In this paper, we presented a JSON δ-CRDT solution to support the development
of multi-user applications based on asynchronous collaboration. Our design is
both simple and modular, and by means of adapters, it allows for seamless
interoperation between different storage and communication backends, such as
Solid pods. Future work include performance optimizations, the implementation
of additional adapters, and porting the library to other languages and platforms
(such as WebAssembly).

Acknowledgments This work has been financially supported by the Swiss
Innovation Agency, Project nr. 42832.1 IP-ICT and by Banana.ch SA.

References

1. Solid technical reports. accessed aug. 5, 2021 (2021), https://solidproject.org/TR/
2. Almeida, P.S., Shoker, A., Baquero, C.: Delta state replicated data types. Journal

of Parallel and Distributed Computing 111, 162–173 (2018)
3. Baquero, C., Almeida, P.S., Shoker, A.: Making operation-based crdts operation-

based. In: Proceedings of the First Workshop on Principles and Practice of Eventual
Consistency. PaPEC ’14, Association for Computing Machinery, New York, NY,
USA (2014)

4. Brocco, A.: The document chain: a delta-crdt framework for arbitrary json data.
In: SEBD: 29th Italian Symposium on Advanced Database Systems (2021)

5. Brocco, A., Ceppi, P., Sinigaglia, L.: libjots: Json that syncs! In: SEBD: 28th Italian
Symposium on Advanced Database Systems (2020)

6. Kleppmann, M., Beresford, A.R.: A conflict-free replicated json datatype. IEEE
Transactions on Parallel and Distributed Systems 28(10), 2733–2746 (2017)

7. Letia, M., Preguiça, N., Shapiro, M.: Consistency without concurrency control in
large, dynamic systems. SIGOPS Oper. Syst. Rev. 44(2), 29–34 (Apr 2010)

8. Nicolaescu, P., Jahns, K., Derntl, M., Klamma, R.: Yjs: A framework for near
real-time p2p shared editing on arbitrary data types (06 2015)

9. Rinberg, A., Solomon, T., Khazma, G., Lushi, G., Shlomo, R., Ta-Shma, P.: Array
CRDTs using delta-mutations. In: 8th Workshop on Principles and Practice of
Consistency for Distributed Data. PaPoC 2021, ACM (Apr 2021)

10. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: A comprehensive study of
Convergent and Commutative Replicated Data Types. Research Report RR-7506,
Inria – Centre Paris-Rocquencourt ; INRIA (Jan 2011)


